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ABSTRACT

N. M. Abrarnson has developed a class of single-error-correcting,
double-adjacent-error-correcting codes {SEC - DAEC), The theoretical
analysis has been docurmnented through a report of the Stanford Electironics
l.aboratories. Disclosures on encoders and decoders for SEC - DAEC
codes have been submitted by N. M. Abramson to IBM. The function of
this report is to give a digest of the SEC - DAEC codes and to illustrate
one example of single-error-correction and one example of double-~error-
correction to assist IBM engineers in evaluating the potential application
of this class of codes. References are made to other codes and analyses
of same which should be considered in determining what code IBM should
adopt for data transmission.

NOTICE

The Departmental Report format (note the code prefix RID) from
San Jose Research is intended for limited distribution--primarily within
the San Jose Research Laboratory. This type of report is intended to
provide a regular channel through which a member of the staff might
offer his proposals, discuss special projects, or invite critical evalua-
tion from other professional and technical personnel.
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Introduction

The occurrence of independent errors in a binary communication
system may be combated quite effectively through the use of single
error-correcting block codes. ’ In many cases, however, (e.g.,
telephone lines with impulse noise) errors do not occur independently
and the probability that the n'th birary digit will be in error will depend
upon whether the {n-1)th binary digit was in error. That is, in many
situations, it is quite probable that if two errors occur in one word the
errors are in adjacent binary digits. Using a double error correcting
codell)s (2) in such situations will increase the reliability of trans-
mission at the cost of a large increase in the number of binary digits
necessary to transmit each word. Such a code clearly does not make
use of the fact that double errors are likely to be adjacent errors.

N. M. Abramson, Stanford Uaniversity, has developed a class of
systematic codes for correcting double adjacent errors (3). He has also
prepared IBM patent disclosures on some hardware to utilize this class
of codes (4,5). The objective of this report is to illustrate the function-
ing of two sample cases in the SAC - DAEC code. The class of codes
developed by Abramson are more efficient than simply using a Hamrning
double error correcting code (L, A comparison of the upper bound on
the number of possible information bits when k parity bits are used is
shown in Table I for SEC -~ DAEC codes and for ordinary double-error-
correcting codes.

From Table I it can be seen that if the multiple errors in a
character or symbhol are at most double adjacent errors, that the SEC-
DAEC code is more efficient than the Hamming code. Potential appli-
cation of this code should be compared wi i correcting codes"
developed at Bell Telephone Laboratorie s.ﬂh}tjh?ﬂ}igf?%



Rules for Generating SEC-DAEC Codes®

Because of the fact that we restrict our attention to systematic
block codes we may write any possible word of our code as

n binary digits

J.«-"“‘“” e Nt oy cemet -—-a—""'/ 1‘\‘ R T o,
"D, D,,..D P, P P, . P
1 ’ m, ~1-2" k-1
m binary digits k binary digits

That is, we shall assurne that each word is n binary digits long.
M of these n digits may be used to convey the information; we denote
these by D;, D, , . . . DH1 . The remaining k digits, denoted by P, ,
Py, . .. Py, P, , are determined by suitable parity checks over the
information digits, ==

The first property of the codes which must be determined is the
nurnber of parity digits necessary for any given number of information
digits. Stated another way, we might ask for the largest number of
information digits we may use for a specified number of parity digits,
k. In Table I we have listed for k= 4, 5, . . . . 8, the maximurm num-
ber of information digits possible for the class of SEC-DAEC codes
obtained. This upper bound is denoted by m#* - 1. For purposes of
comparison, we have also given in the same table m#*%, an upper bound
on the number of inforrmation digits possible for codes which correct
all double errors.

We shall present a set of rules for constructing SEC-DAEC codes
where for any given number of parity digits, k, the number of informa-
tion digits is m* -1, the maximumm possible as indicated in Table I. In
order to completely specify a systematic code, it is only necessary to
specify the digits checked by each of the parity digits. A table for
determining the first parity bit is given in Table II. An example of how
this is used in constructing a code is given in Table III for the case
m = 10, k = 5.

The rules, then, for filling out a parity check table of k rows
{corresponding to the k parity digits) and m#* - 1+ k = n columns (corres-
ponding to the m* - 1 information digits and the k parity digits) are as
follows:

w See footnote on p. 1
#wEven parity is assurned throughout this paper.



REFERENCE 3, TABILE 1

1
Table I - Comparison of Codes
Redundant Information Bits
Bits
k
m* - 1 m¥
SEC - DAEC SEC - DEC

Abramson Hamming !
]
é
4 3 1 i
5 10 2 ;
|
6 25 4 ,
i
! 7 56 8
8 119 14 E
E
i E |

k = number of parity digits
m* - 1 T upper bound on the number of possible infor-

mation digits for the class of SEC-DAEC codeas
obtained.

be o %t = upper bound on the nurnber of possible infor-

mation digits for ordinary double error
correcting codes.



1. Number the rows F_, PZ’ .- - P 4 and P as indicated in the
example in Table .II{.

2. ILet Po be a parity check over all the digits.
3. The parity checks for P; may be determined from Table IIL

For the derivation of this table refer to N. M., Abramson's
report.

For any given k we use the sequence of zeros and ones in
Table II to obtain the parity checks on P as follows:

For any k the corresponding sequence in Table II is m* -1

+ k digits long. If the j th digit in this sequence is a zero

P; will check the j th digit of the code words; if the j th

digit in this sequence is a one P; will not check the j th digit of
the code words. That is, we need only write the sequence
obtained from Table II in the first row of the parity check

table we are constructing, using a cross for a zero and a
blank space for a one. For example:

for k = 5, Table II gives the sequence:
010110010001111.

The row P, in Table Il was derived by placing a cross
(x) in each position having a zero in the above sequence.
The notation of Table IIl rneans that for this code parity
bits:

P checks information bits Dl’ D3, Dé, D7,

Dg’ and DlO'

4. The parity checks in each succeeding row of the parity check table
(except the last, P_) are then the same as the row directly above,

except that they are shifted to the right by one digit. {See Table III).

These four rules together with Tahble Il allow one to construct SEC-
DAEC codes.

Generation of Parity Checks by Binary Shift Register®

The fact that the codes obtained in this paper may be simply instru-
mented depends directly upon the properties of the sequence of zeros and
ones giving the parity checks for Pl' {See Rule 3). Each of the sequences



TABLE I1

Parity Checks for
P in SEC-DAEC Codes
(m - sequences)

bigit
humber k 4 5 J
1 0 0
E 2 0 1 |
| 3 1 0 :
| 4 0 1
5 1 1
? 6 1 0
7 1 0
8 L
! q 0

10 0

11 0

12 1

13 1

14 1

15 1

{For an extended table see Ref. 3, Table II)

TABLE III

Parity Table for m = 10, k = 5,

Dy D, Dy Dy Dg Dy Dy Dg Dy Do P} Pp Py Py

b'e | x LK X X | X x .
x | L X xx X %X %
x P Cx ix x| x x ! 5
< L x X X X Ix X
X X X ‘X ix X X X X X ‘X X 1% .X




of length 2R 1, listed in Tablie II may be derived from a R stage binary
shift register. A block diagram of a four-stage register is given in the
upper part of Fig. 1 consisting of flip-flop ¥y, ¥, Fa, F4 with four
switches, and three mod-2 adders. In Fig. 1 the switches are set in

the pattern 1001 corresponding to the values found in Table IV for R = 4.
The procedure is to insert an arbitrary binary number (except 0000) into
the flip-flops. This binary number is then shifted to the right every T
seconds while simultaneously we feed into F; as indicated in the diagram.
The successive entries of zeros and ones into F,, then form a linear
binary shift register sequence. {T is the period or bit time).

For certain settings of the switches the successive entries in the
flip flops of a R-stage register will be all the R digit binary numbers
except the all zero number. In this case, the sequence of zeros and
ones in F; is periodic of peried 2" - 1 and is called a maximal length
linear binary shift register sequence -- or m-sequence. The sequence
of zeros and ones used in Rule 3 can always be taken to be an m-sequence
out of k - 1 stage shift register ending in k - 1 ones. Putting all ones into
the four flip flops Fl’ FZ’ F3, F4 of figure 1 with the switches as indi-
cated will cause the sequence of length 2% - 1 =15 given in Columns F; in
Fig. 2 to appear the F-register starting with the first shift.

The encoding operation for these SEC-DAEC codes then can make
use of the fact that the parity checks are derived from m-sequences.
For example, the timing signals for P| may be obtained directly from
the first flip flop of a k - 1 stage shift register which is started with
ones in all k - 1 flip flops, The timing signals for PZ to Py _; are the
same except shifted in time,

The decoding operation is almost as simple as encoding. The first
step of course, is to form the checking number Cy Cr. oo G 1 C
as in an ordinary Hamming code. That is, we set C; = 0 if Py of the
received word satisfies its parity check; we set C} = 1 if P, does not
satisfy its parity check. The timing signals for this operation are, of
course, derived in the same manner as in the encoding operation.

There are then four possibilities:
(1) All the C| are zero:

No errors occurred,

{2} CO is one; C1 is zero for some i:

A single error occurred.




TABLE IV

SWITCH SETTINGS

(VALUES CF 51 FOR R-STAGE MAXIMAL LENGTH LINEAR BINARY
SHIFT REGISTERS)

R 3 4 5 6 7 8 9 10
S1 0 1 0 0 0 0 0 0
So 1 0 0 0 0 0 0 0
83 0 1 0 0 0 0 0
54 1 0 0 0 1 0 0
S, 1 1 0 1 1 0
56 1 1 1 0 0
57 1 0 0 1
Sg 1 0 0
59 1 0
S10 1

{(For an extended Table see Ref., 3, Table 3).
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We take a k - 1 stage shift register with the switches (5;)
given by Table IV. This shift register is also started with
all ones in the flip flops. We start shifting the contents of
the flip flops in the usual manner. After sorme number of
shifts, say N, the mod 2 sum of the nurnber in the flip flops
and the first k - 1 digits of the checking number will be all
ones.

The error occurred in the N th digit of the word.

{(3) Co is zero; C; is one for some i:
A double adjacent error occurred¥,

We take a k - 1 stage shift register with the 5; given by
Table 3. This shift register {which can be the same regis-
ter used {for possibility 2) is started with a one in F; and
zeros in all the other flip flops. After N shifts the med 2
surn of the number in the flip flops and the first k - 1 digits
of the checking number will be ali zeros.

The double adjacent error occurred in the Nth and N +1 th
(mod n) digits of the word.

(4) All the C; are one:

An odd number of errors greater than one occurred, *¥

Sample Cases

To illustrate the code let us consider a six bit alphanumeric code
having 64 possible symbols with 2 four bit station identification symbol
representing a distinction between sixteen local stations. This makes
ten bits of information per character sent into an intermediate buffer
from a rerote keyboard. Looking at Table I, we see five parity bits are
needed for the SEC-DAEC code. Note that eight parity bits would be
needed in a Hamming SEC-DEC code, instead of the five needed in this
code.

To illustrate single-error-correction we shall use the examples of
Table V in which the RAMAC character code is used. (10).

Hmmm oo These codes consider the case where both the first and last
digits of a word are in error as a double adjacent error and automati-
cally correct the word if this occurs. Examples are shown in Table 1X
in the Appendix.

%% See Table X in the Appendix for an illustration of this.



Digit in
SEC-DAEC
Example

Letter "R"
from station
IIlOII

Received as
"J'" instead
Of IIRH'

Letter "J" from
Station '"14'.

Received as
Letter "J" from
Station 13"
instead of ''14"

~10-

TABLE V

SAMPLE MESSAGES

Station Character (RAMAC)
AETT R AT TR
10 9 8 7 6 5 4 3 2 1

First Example:
1 0 1 0 0 0 1 1 0
Single Error in Fosition 6:
1 0 1 0 0 0 1 1 0
Second Example:

1 1 [0} 0 0 0 1 1 0

Double Error in Position 7, 8:

v [0 1] 00 0 1 1 0
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Encoding

The encoder is illustrated by Figure 1. The blocks marked '"+!" are
mod 2 adders, and the blocks marked "A" are AND circuits. Only fifteen
steps of the clock are used in encoding. The additional ten are sometimes
used in decoding for the error correction cycle. The Four Stage Shift
Register Fy, FZ’ Fa, F4 enclosed in the dotted lines produces a maxi-
mal length linear binary shift register sequence. In this example the

switches are set 5} = 54 = 1 and S, = S35 = 0 so that the sequences of
Ref. 3 (Fig. 4} are produced.

The rules (Ref. 4) for encoding are as follows:
(a) Cycles 1 through 10:

(1) Start Fl = 1, Pl = 0

(2) The content of D is shifted out and first digit of message is
entered in D

(3) IfD = 1 and Fi = 0, Pi changes; (1 = 1, 2, 3, 4) otherwise

P, remains the same.

(4y ILD=1, Py will change; if D = 0, then Py remains the same.
(5) F shifts

{b) Steps 11-15 (i. e. , steps lk for k = 1, 2, 3, 4, 5)
Omit step (1).

(2) The content of D is shifted out and P, is entered in D.
(k= 1-4, 0) (Cn step 15 use PO).

{3) {4}, (5) the same as in {a).

The sample message used in Fig. 2 is "R from station 10”%0_1_;”
[610100110. The process illustrated in Fig. 2 adds the digits 01101 to
make the encoded symbol: (11011010100110. This can alsoc be

P0 ---Py Dyg ----D)
derived from Table III by adding up the digits appearing in the ''x"
squares except the P, P, square and making P; "0" or 1" to obtain
even parity.
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FIGURE 1 - ENCODER
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For example:

Dy+ Dy+ Dy # Dot Do+ D,y =1, s0P =1 \
Dz% D4+'D7+ DSifDlof Dl = 0, so P, = 0 }
Dk Dot Dgt Dgi Py + Py = Liso  Py=1 51301
Dy+ Dyt Do+ Dygt P,+ Py = l,so Py=1
;. D+ Py =0, so Py =0 Vo
1 to 10 1 to 4

This calculation from Table 1II agrees with the derivation in Fig. 2. Note
that the registers F and P are autormnatically returned to the starting posi-
tions.

Decodir_l_g_

The basic procedure is to compute the parity bits again during receipt
of the information bits, and to compare the recomputed parity bits with
the received parity bits. If there is a discrepancy, the checking number
obtained will tell in which bits the errors occurred. In practice the com-
puting of the new parity bits and the comparison with the transrnitted ones
can be combined so that the received parity bits are used in computing
the new parity bits so that the computed bits left in registers Py P4 P3 Py
P,y after Step 15 are the checking number bits.

The same basic circuits are used as in the encoder, plus the inclu-
sion of a 10-bit buffer shift register and some additional switching logic
is required for the decoder. A possible circuit is shown in Fig. 3. Each
square or rectangle represents a trigger (flip-flop) unless marked other-
wise. A 4" indicates a mod 2 adder, and "A'" an "AND'" circuit. In
this circuit the computation and comparison are overlapped into a com-
bined operation.

The counter starts at zero. The P; and F; registers start as in
encoding. Information bits coming in are shifted from D into 5y and
step by step to S;. The encoding is duplicated except the received par-
ity bits are used in the calculation of the checking number.

Cn step 16 the shift is omitted and 815(130) is added mod 2 to Sl

4)
813, S12: and Sq;. The compliment of PO is added to Fy, Fp. F3
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{similar to R, R3, R4 of Ref. 5}. This also sets up register Sp if Py=0,
indicating a double error. The function of flip-flop Sp is to provide that
when the first error is corrected during steps 17-25, the register S5q is
set up s0 that the next bit will a.lsolbe corrected by changing the bit in 5,
in addition to changing the bit in D".

During steps 17-25 the shift register F; and the message buffer
S1-8S;¢ shifts during the complete set of cycles 17-25, 0 so that the full
ten information bits will be shifted cut through register pl

The shift register F; shifts until the compare circuit shows a coin-
cidence. Then the bitin error is in register D7, so A "1" is added to
the content of D} to effect correction. If there was a double error the
content of 5; would also be changed.

Cne addition to the circuit is still rgﬂciﬁm;red for automatic operation.
Note that in Fig. 4 on the reset (0) F = 0100 and P = 10110. These
should be F = 1111 and P = 00000. A reset control has to be added to
accomplish this.

Single Error Correction {SEC)

Consider the case of a single error in digit 6 which converts the
letter "R" to "J'". The sequence of operations is traced in Fig. 4.
Note that the difference between decoding and encoding is that on steps
11-15, the received parity bits are used in calculating the next values
of P in decoding, (Fig. 4), while the values of P on the diagonal shown
in Fig. 2 are used in the original encoding.

Examination of step 15 in Fig. 4 shows that the checking number is
in the P register., The fact that P_ = 1 indicates a single error. The
number P4P3P2Pl is the compliment of the value of F4:}:"3F2F1 {when
started from 1111) at the correct step for correcting the error. The
checking number 11001 can be verified from Table III by noting that Py,
§4P3P2Pl = XX00X in column Dy, which corresponds to an error in the

th bit.

Examination of Fig. 3 for step 16 shows that the ''1" bit from P is
added to P4, P3, Pz, and P.. Then on step 22: F4F3F2Fl = P4P3%’
The compare circuit then changes the bit in D", so the message is

corrected as in step 22 in Fig. 4.

2P

Double Adjacent Error Correction (DAEC)

The example used here to illustrate double error correction is *J"
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from station ''14"., The parity checks are computed in Fig. 5. This
gives

00001 1110 000110
Parity 14 J

The error introduced in this example is a double adjacent error in posi-
tions 7 and 8 making the station identification '"13'" instead of ''14*,

The difference between SEC and DAEC shows up in Step 16 in Fig. 6.
At the end of step 15, ¥ _z 0, indicating a douwble error. Adding PO to
Py P_, PZ and P, lieaves the P register the same. Adding the comple-
ment 6f Py to F4, Fg, and F_ sets the F register to F4 F FZ F, o= G001
(ox F,F,F,F, = 1000) which fneans the second column of Fig.“4 (of Ref. 3)
is used In double-error-correction. Examining this second column shows
that shift 7 from 1000 gives 1010 (or F4F3F2Fl = 0101).

On step 23, the 7th shift, Fi z Pi’ S0 Dl is changed. Back at
step 16, the P, = 0 was inverted at S _; so 8 was set to '"1", s0o 5 is

also changed, thus accomplishing the double error correction.

Transistorized Encoder and Decoder

A preliminary estimate of the transistors needed to construct the
encoder and decoder of Figures 1 and 3 is summmarized in Table VI.
These estimates are based upon using ''standard'' or "'proposed stan-
dard" transistor logic cards from the IBM Standards Book, CTRL
units have been used extensively in these estimates which limit these
estimnates to bit rates of 20, 000 bits/sec or less.

For ten information bits 62 transistors are required for the encoder.
For decoding 82 transistors are required, provided a buffer storage is
available for use to store the incoming character during receiving and
error-correcting. If such a buffer is not available , a decoder buffer of
20 transistors would have to be added. 1If half-duplex operation is used,
i. e. , transmission is in one direction at a time, the addition of four
twelve point relays would switch the logic elementsbetween encoding and
decoding modes of operation.

Examination of columns "b" and "m" in Table VI shows that the
number of transistors required is approximately proportional to the
number of parity bits k. Thus, increasing the information bits from 10
to 2400 requires change from 5 to 13 parity bits, resulting in a change
from 82 transistors to 210 transistors for the half duplex operation per
terminal.
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FIGURE 6 - DOUBLE ERROR CORRECTION

(Same steps as single error decoding.)
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A curve of number of transistors versus the number of redundant
bits is plotted in Fig. 7. The relationship is linear except at transistion
points such as those caused by jumps due to the allowable informa-
tion bits being a function of a power of two while the number of transistor
is related to a function modulo 3.

A limiting economic factor of this error-correcting code is that a
buffer storage is required to store the block of digits between decoding
and error-correction. In most proposals for data terminal sets a
buffer storage unit has been included, so that the buffer need not be
included in the incremental cost of adding double-adjacent-error-correction.

Extension to Multiple Adjacent Error-Correcting

A. B. Brown and 8. T. Meyers (6) have postulated thre~ tfer S1-510
of the pro.babilit.y that a bu'r.st covers h ‘“; and the messag® b‘% du}-ing the
Ref. 6 (Fig. 1) is used ==""" .0 registeér ~1 o buffer Sl'sé_iqon pits will b€

the sh! messas

17-25 y, The
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pifted © -~ 1s long

- wunger than two bit timeg
: . + The
-«t & second bit will be in €rror when the burst

- Further re

- sea I Y
fficient for IBM needs reh will indicate
For bursts longer than twoO Dib vieeaw_, .

be considered:

(1) Use the multiple adjacent error correction (11} code devel-
oped by P. Fire at Sylvania Electric Products. This code
is an extensionof Abramson's codetohigher orders of multi-

ple errors.

(2} Use the burst error-correcting code developed at Bell
Telephone Laboratories by Hagelbarger. (7-9). These
start with a fifty per cent redundancy, but are capable of
correcting longer bursts of errors.

(3) Use of the double adjacent error code of Abramson with a
longitudinal block check to detect triple adjacent errors
and certain other error patterns.
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TABLE V1

ESTIMATE OF NUMBER CF TRANSISTCRS REQUIRED FOR ENCCODING
AND DECODING

TRANSISTCRS REQUIRED o "
Bits T | i EEE
p {Common | Encoder [Decoder Combined Decoder § ® A
- !Elements ;{Separate) tSeparate) Encoder Buffer 45 .3 3’
; F {i Decoder, (If not {% ° g
AR P ; Switched  available & &
s Y8 AR T 1 D Half in Data “ g ';
g 3‘5;‘3 Za L Bm'ﬁ._,',zg «S |,  Duplex Set) 3%1:
ST 28 Fn 8] Qe8| 90 |85|s 820
wld T8 5 3] S{F210 S (3|0 T8 D
R go laxe (U] S0nlk US Onjs  Total % .0 A
a-b c-d Ce-f-g-h i-j-k-1 m n o/p
10-5 14-10  ° 26-2-12-64 32-4-22-82 82 20 4/12pt
48.7 22-14 38-2-17-93 48-4-28-116 116 96 6/12pt.
120-9 30-18 © 59-2-21-13065-4-30-147 147 240 6/12pt.
480-1034-20 58-2-24146684-32-178 178 960 6/12pt.
1920-12 42-24 71-2-28-167 81 4-45-196" 196 3840 8/12pt.

. 2400-13 46-26 S 77-2-21-172 88-4-48210 210 4800 8/12pt. .
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(4) Use a combination of a parity bit on each character
plus a longitudinal block check such as the seven-hit
code or the 4-out-of-8 code with a longitudinal check
on each row. Studies of some of these codes have
been made in Endicott (12) and Poughkeepsie( 13).

The use of the Hamming (1} Code has been excluded
on account of the lower efficiency., The CMNICODE
may be specially suitable to error-correction with-
in a computer, but the large redundancy makes it
efficient for data transmission . (14-15)})

It may be possible to develop an extension of
Abramson's DAEC code which would correct for a
set of burst error patterns of the most probable
distribution. The work of B. Elspas at Stanford
Research Institute has resulted in an alternative
logic for performing the encoding and decoding in
N. Abramson's SEC-DAEC code {16} which may
lead to a simplified system.

Conclusions

The following of these detailed steps in the operation of an encoder
and decoder for N, M. Abramson's SEC-DAEC code demonstrates the
feasibility and simplicity of the systern. The small number of parity
bits required and the simple logic circuits required make it potentially
attractive for data transmission use. The estimated number of transis-
tors per terminal for the error-correcting logic is relatively low.

The unknown factor in evaluating this code is the statistics of
error bursts. The American Telephone & Telegraph Company is mak-
ing statistical analyses of error bursts on their lines using their FM
Data Subset. When this data is available, it rmay give an indication of
the error pattern distribution., 1If triple adjacent errors or double
errors separated by a correct bit are significant, the advantages of
this code diminish. However, there are possibilities of deriving
another code from this SEC-DAEC code that would correct other error
patterns more efficiently than the alternative code listed.
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APPENDIX - SUPPLEMENTARY NCTES

In comparing different codes it is significant to know the "minimum
distance'" or minimum number of digits in which each character differs
from all the other characters or code points. This minimum distance
can be considered as the minimum number of edges of an n-dimensional
cube between any two code points when represented by an n-dimensional
space. An elementary illustration of the separation between code
points is given by Colin Cherry,

The (AC)® - SEC-DAEC code of N. Abramson has a minimum dis-
tance of four. The term (AC)2 means that the code is "almost complete"
and that it is an "all-check! code. The term '"complete' means that the
inequality relating m and k is an equality, similarly to the term ''close-
packed' used by Shapiro and Slotnik. Since complete or close-packed
codes generally do not exist except for trivial or special cases, practi-
cal codes which are "almost complete’ are developed by calculating m*
from the equality of ref. 1, eq. 3, and then using m = m* - |, which
allows one less information digit than the impossible complete code for
the same k. The term "all check' means that one of the parity bits pro-
vide a check on all the bits.

For convenience in understanding the double-adjacent error correct-
ing code, a sample case of m = 3, k = 4 is illustrated in Table VII. The
X's indicate which bits each parity bit checks. Then a table of dis-
tances is prepared from this and is shown in Table VIII. In this table
the distance between the information and parity sub set are shown sep-
arately and are added together to get the total distance of each code point
from all the others. In this case the minimum distance is equal to four
and in fact the distance between every separate point is four. A Hamming
code with minimum distance of four could provide single error correc-
tion with double-error detection or it could provide detection only of
single, double, and triple errors.

A table of checking numbers for single, double, triple, and quadru-
ple adjacent errors for the parity table of Table VIl is shown as Table
IX. From this one can see that if a systern was designed so that no
single errors occurred the SEC - DAEC code could be used to correct
double adjacent errors and triple adjacent errors. If we count the
check numbers for single and double-adjacent errors, we see they add
up to fourteen of the possible sixteen. The checking number 0000 means
no errors occurred of the type for which the code is designed to correct.
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In the third section of this report it was stated that the remaining
unused check number: all one's indicates that an odd number of errors
greater than one occurred. The possible tripie errors are shown in
Table X. The checking number of all one's occurs for six of the 35
possible triple errors. The other possible triple errors would give
checking numbers which would be interpreted as single errors.
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TABLE VII
Parity Table for m = 3, k

"
N

Pl X X X
PZ x x X
P X X X
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TABLE IX

CHECKING NUMBER FOR SINGLE, DOUBLE,
TRIPLE and QUADRUPLE ADJACENT ERRORS

Error In Check No, Error In Check No.

D 1001 D PP 10

1 31 2 01

1101 P PP
D2 1758 1101
P PP
D3 0111 2350 0l1l11
Pl 1011 P3POD1 1011
P2 0101 PODIDZ 0101
P3 0011 DIDZDS 0011
0

P0 0001 D2D3Pl 0001

D
Dl 2 0100 D2D3P1PZ 0100

D PP
I)2 3 1010 D3P1 >t 1010
P3P1 1100 P1P2P3P0 1100

P P P D 1110
P1 2 1110 5 3P0 1

D 0110
PZPB 0110 P3P0D1 5
D.D 0

P3P0 0010 PODI 2P 0010
P D 1000 D DDP 1000
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TABLE X

TRIPLE ERRORS

Error In Check No
D1D2D3 0011
DIDZ.PI 111k
DIDZPZ 0001
DIDZP3 0111
DIDZPO 0101
D)D3P, 0101
D1D3P2 1011
D1D3P3 i101
D)D,P_ 1111
DIPIPZ Clil
D1P1P3 0001
DIPIPO 0011
Dy PoPy
D|P,P_ 1101
D;P;P, 1011
D2D3P1 0001
D,D3P, 1101
D,D;P, 1001
D,D3P, 1011
D,PP, 0011
D2P1P3 0101
D,P P, 0111
D,P,P, 1011
DZPZPQ 1001
D,P3 P, j211]
D3PIP2 1001
D3P1P3 Illlg
D3P1P0 1101
D3P,P; 0001
D3P2Po 0011
D3P5P, 0101
P|P,P, 1101
P1P2P0 1111
P1P3P, 1001
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