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Calculation of & and Ge by Use of a Stationary
Integral Equation for an Iris-Coupled Resonator. =

F. B, Wood*x

Summary - Iris coupling between waveguides and resonaturs
is investigated. In the case of high G resonators
common to microwave frequencies, the dyadic
Green's functions are modified by the method of
perturbation of boundary conditions to accouant
for the wall losses.

The integral equation for the input admitiance of

a cavity resonator coupled to a wavegude by

means of an iris is found to have cach alimittance
comiponent in the variational form of J. 8. Schwinger.
The square of the transformer ratio of the egquiva-
lent circuit is found to be stationary when the wave-
suide anc resonator fields have a similar form,

The integral equation for the admittance lcads
directly to a simple equivalent circuait.

Tae coupled O of the resonator 15 obtained by
inserting an approximating trial {ield in the inte-
gral equation, and then taking the acrivative of
the input admittance wila respect to freguency.
Tae dimensions of a sainple rectangular resonator
are chosen so that the susceptance values calcu-
lated by Marcavitz for rectangular irises in
infinite waveguides can be used. Bethe's systemn
of lumped constants for small irises is extended
to a system of 'v-factor” and Yg-factor” curves
Ior computing & f and Qo of a class of resonators
of different modes and sizes where the iris field
1s approximately the same for cach resonator,

Curves of A f and Qc are calculated for a

Ty g1 rectangular resonatar, and are then
transformed to approximation curves for a
TEMg, ¢, 3 coaxial resonator.  birect calenla-
tions of Go are made from the integral cguation
for the coaxial resonator for a part of U range
of irs sizus, 'The two sets of theoretical curves
are compared with experimentally observed
curves of Qc.

*The research reported in this paper was sponsorew by the Air
Materiel Command, United States Air Force, on Contracts W-19
(122) ac-38 and W -33 (U38) ac-16049 at (he University of

California, Berkeley, California.
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INTRODUCTION

In general it has not been practical to obtain exact solations for the
input impedance of a cavity resonator with finite wall conductivity, The
standard practice is to obtain a scolution for infinitely conducting walls
and insert a term at some stagze of the development to account for the
wall losses., k. U. Condon ! puf a damping term in the dificrential
equation for a rmoae of oscillation of a probe coupleu cavity., In volume
3 of the Radiation Laboratory Secries, two methods were used: (1) Exten-
sion of Fosters theorem for slightly lossy networks by introducing a
complex frequency 2, and {2} Adding a darmping term in the dynamical
eguation for a loop coupled resonator in the Lagrargian treatment deve-
loped by Crout and Banos”. Slaterﬁidevelops the input impedance for a
lossless rescnator and inserts the wall Inss damping term by analoyy with

an eguivalent circuit,

In this analysis, the same terms for wall losses which are derived
by the above investigators are developed by a different technique., Here
the adrnittance for an iris-coupled resonator is obtained by the develop-
ment of a moedifice Green's function through the method of perturbation
of the boundary conditions, The advantages of this method are: (1) Tae
serturbation of boundary conditions brings in the principal wall loss terms
in the admittance formula directly without recourse to analogy; (2) the
usc of the modified dyadic Green's functions permits a simple and direct
development of the admittance as an integral equation in stationary form
suitable for use with trial 1ris fields, and (5) a simple eguivalent circuit

comes directly from the integral eguation.
1. Condon, E. U,, "Forced Oscillation in Cavity Resonators ', Jour.
Appl. Phys., Vol 12, Feb. 1941, pp 129-132,

2. Monigomery, C.G., "Principles of Microwave Circuits', M.I T.
Radiation Laboratory Series, Vol. &, McGraw-Hill {1948), pp 215-215.

3. Montgomery, C.G., loc. cit,, pr 21ls-225.

4, Slater, J.C., "Microwave Electronics'', N. Y. Von Nostrand {1950},
PP 48, 30, 69, 75,
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GREEN'S FUNCTIONS

Dyadic Green's Functions

In the sclation of the iris coupling problem, the basic procedure is

to obta.n au equation for the electromapnetic field in the resonator in

11
p=3

terrnis of the fiell on the boundary. ¥Froun: this, an integral cquation is

obtained for the input admittance as a function of frequency.

Given a region V bounded by a surface S, it is Jdesired that the olec-
troma:metic field in the region be obtained frorm a soowlodge of tne cur-
rent distribution in the volume and on the surface. Since the carrents

and their related fields ave both veotosrs, it can De scen that a Greaon's
function in its most general forom would have to b a tensur or Jdvadic

which transforms an element in current vector space to an element in Lieldg
veutnr space,  Schwj 134:-1" has defingg electric and magnetic dyadic

L -~ (1) : () o
Cireen's functions (r, =) ani (v, s) for a rezion boundeu by

4 sarface  so that they sive the clectric and macnetic ficlds respeciively
due o electric and ma;netic current distributien J{r) and Jrodr) as

follpws whare o is the uniy normal into the region:

_ = (1) _
Eey e J [ ey T evis) (1)

it

HY(r) . r-' {i,6) 3-1'11{5’) WV{s). (<)

By deriving the wave equations for Z{r) and H(r) from Maxwell's equations,
and utilizing tne above definitions, a pair of aifferent:al L‘(’l\lcitli..ll'lr:» can be

el

obtained for these Green's functions.

5. Schwinger, J. 5, " 1"1cf1ry of Obstacles in Resonant Cavilies and
F¥avezurdes', MO T, Raoiztion Laboratery Report 205 {43~ 34),
May 21, 1945 (¥PB c.'? 550,

6. Levine, H. and Scheinger, J. "On the Theory of Electromagnenic

Yave Liffraction by an Apceriure in an Infinrite Planc Conducting
Screen', Conurmanications on Pure and Applicd Matn, Vol 11, N4,
Do, 1950, np 3595-391.

These differential equations are given by equations (3, 7) and (3 Li).
T'o change to M. K. S5, units, rnulupl‘f the rizht hand sige of cach

respactively by — (Opand — 308
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Sxpansion of Green's Fanctions in Normal Modes

The Green's functions can be expanded in normal modes 1 an wierior

repion bounded by infinitely conducting walls.,  The boundary condidions

on the electromagnetic field and the Green's fanctions arc taco
-
- = - r(l) . - :
nox nir) = O, N X {r.s} = O, (3)
-
- = - 2
s ccarl Hir) 0, wxVxl @ Lo (4)

>
niine? Tite) ana T (2) T where T i an arbiteare vocior
Substituting H{r) and (r,s)+ e, where ¢ 1is an arbitrary vector,
inte Green's second vector identity and utilizing the transpose relation-
ships between the two Green's functions, and applying the boundary con-
ditions of equations (3) and {4) result in the following equation for H(r)

in terms of tangential F on the boundary:
-~
.E-I(s) = +\£[E(r) X ?1]' r (d)(r,s) dS{r).  (5)

The general expansion of the dyadic Green's functions in terms of

the normal modes is obtained by substitution of a Green's funcrion and
a corresponding normal mode function into Green's sccond veciar iuen-

tity and by application of the hormogeneous boundary concditions,  The

resultant magnetic Green's functions 10 M. K. 5. units 1s:

—

(2) F (£} F_(5) -
P (r,s) 2 —. s S F ()} F (s) ¢ . £)

W -w
a a

The f;a(r)'s are the rnagnetic mode vectors corresponding to tac cizve-
values a of the vector wave eguations for F(r) in thc interior revion,
These orthonormal mode vectors have zZero divergence., Henco tae
additional vectors I—E—‘.R(r) having zero curl are required for con ploieness,
but can be ornitted for the radiation field. The normal mode veclors
are orthogonal and are normalized so that
- — 1 a =z b
M Falr) Fy{r) dV (7
v

O a #b

7, Levine and Sciawinger, ibild, o3
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Tais mavsnetic Green's function I—‘( )(r, }is compared with th

T

s

admittance ciyddlcY(r s} of Marcuvitz” and Sci awinger in Appendix

8. Marcuvitz, N, and Scawingzer, J, "On tae Representation of the
Electric and Magnetic Fields Produced by Currenis and is-
continuities in Wave Guides', Jour. Appl, Phys., Veol. 22,
June, 1951, bpp sde-sl9.

The Effect of Vall Losses

The inpnt admittance deterimined fron the Green's function has a
singularity at each resonant frequency. Tais reans that the calcu-
latec insur admitrance will be infinite at the point vacre a real resona-
tor will Lave a finite Inpul admittance. Tinis incans that the theoretical
calculauions using the Green's functions fail to jive a finite answer just
at the region where experivacnial data can no observed, If a Green's
fanction could be found for the boundary conaition of lossy walls, the

egions where theoretical and experimental resalis coule be obtamed
would overlap and taus pevinit covparison.  The wall losses 1o a
cavity resonator al a given freguency are detormianed by the total f1eld

as follows:

. ) A . - - ’w
Pwall — (1/2) Z aa nx Ha) - ab (n x Hb) 55..15 {3}

5

Examination of this equation shov's that the contribuations of the
cifferent rnodes add in gquadraturc, not linearly, 3o that an exact calcu-

lation of wall lusses would be veory cumbersome.

¥When the wall losses are relatively small, as is usually the casce in

microwave resonators, the boundary condition for lossy walls can be

set up as a perturbation of boundary conditions sirnilar to that of Fesiibach

9, Fesiabach, H. "On the Porturbation of Boundary Conditions'',
Phys., Rev, Vaol. €5, June I and 15, 1944, pp 307-318.



(&)
Four a resonator with lossy walls, the boundary condition on H beconies:
- -~ _ - <> _
n X Curl H we [n xH{ Z (3a)

whoro

(i)

) ({.-;C )

and @ is the wall conductivity,  The unit vectors on the boundary suriace
are Ex and & respectively, The differential cqguation is anchanged, but
¥

tae boundary condition becomes:

) <>
- r‘"m i -
n };t_‘u-;ls r,5) = n_ (v, 8) .

Z {ti)

i 15 -
Subatituting H{r) and { )( rys) ¢ into Green's second vector cdentaty
ejuation and using itne wave equations wita the difierential equation and

boundary conditivng (?) for the Green's functions ave:

-
= = L4 .
‘s[\[h{r) % Lr] (—,z' {r,=) dS(r)

o> ad ki
¢ 4 — [Hn-Z. m. x(_'(“)(«,-,s) 45(r)

Eqration {(11) can alse be considered as an antegral eqguation fov ihe
ta node Greoen's funciion for lossy walls, If TxWand X xR are inown
ever the bowggary tacn tae probleic woeald be the sol tion of this ategral
egaation for (2)(1‘, £} Lia resonator coupling probler the ticls usually

Doeoassamed as raown only at the iris,

o

50 there 1s insufficient in

-

I -

raation available 1o ise this intogral eouation,

Since a Green's Lunction does not tive to obey the same bouncary

conditions as the corresponiing fiel., a Green's fanction satisfyo Cga -

tion {4) mmay be asced. Howevor, tuats still dovs not resolve e srovlen
becanse (o [ield murst still Do snown over the waole Soundary.,  [Looonld
simplity the problen. if a mocified Green's funciion could be found waich

has mociiied characteristic adv.itiance torms represantins tire o7teor of
wall Tosses, Such a modified Grocrnrs £

Letion v oule reduce cguation (i1)
to the sin pler Lo of couadion {5).
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Twhen the wall losses are accounted for py the characteristic aarnmt-
tance terme 1in the Green's functinn, the Dield clstripation in Lh regoratar
can be replaced by the corresponding field distribation for infinitely
conducting walls., Such an approximation would simplify o> problems,

i L T e i .

since B ox n owould necd 1o be snown only at the Loie. Tuls procewnre woula
fall to give the local variations in tne field insice Ltae volume cae to tas
wall losscs., However, it would -ive the total effect of tae wall 1ssses 1w

the input admittance of the resonator as seenv frorn 2 aistance down the

wavegulde from the coupling iris,

If the wall losses are small, there are two mictnods using a periaroan-
tion af the boundary conditions thal cas be tried to obtain sch 2 modiliec
Green's function: {1) Repented suwstitition ol snccessive approrinialions
to the Green's function iato an intecral equation, wsing the Green's
function for infinitely conduacting walls as the first app:'oxi:cationg; (<)
Substitution of pertarbed eigenvaiuces for lossy walls into the Groou's

{unctions for infinitely comducting walls,

Fhe first of the above imethods results 1 a s of cocditionally con-
vergent series, which are dilferent f.o.r(.’q)«..gL and @ )U.!l This mmethod
avolds any cumulative violation of equation {3) in i sarnmation of the
wall losses, wbut in so doing the admittance near cacn resonance tails

to correspond to physical reality.

The second method shifts the singularities Lo the left of the (A} —
axis 1n the complex frequency plance (o 4= @) so that the input admattance
1s real and finite at each resonance, wiich corresgonds to the range
of experimentally observable phenomena. This approximation, aowever,

violates eguation (b}

An examination of these two methods of approximating the Green's
functions for lossy walls shows that the second rrethod in which the
pertarbed eigenvalues are used, is a reasonable approximation for ricro-

wave cavity resonators whers the internal {2's are normally aigh,
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Approximate Green's Functions Using Perturbed Eigzenvalues

The approximate perturbed elger'valkw can be determineo as follow
. ) . Do
by the method used by Feshbach’'. Vhere H(r)is tho ma_netic field in
the lossy case and F (v} is the non-lossy ortaonormal mode manetic

field vector for the unuverturbed eipenv d].\mw , e wave eguations are

2 = .
curl curl H ome ('Y H, (1Za)
curl curl B o= kz F . {12)
o T e T
and the boundary conditions are
=~
T curl H o e [nx}—i]-gjw(:?ﬁ, (12a)
nxocurl Fg = O, {13b)
Putting H and f, ints Green's second vector identity anu using tnc

above wave equation and boundary conditions give

s
1<2 . (k!)2 f}_f Eok dV = jwe‘/ﬁ'ﬁ'x :ﬁ] 5 _fd 7 dS. (14)

v

By taking F“ {r) as the first approximation to E-l(r), the peorturbed eigen-

value or resonant frequency is

e 2 ;

Fuy = (14 )m/ (16)

/( ) (ST

*f JEE (T ) (FxF,) us

when u_-—,_a ; Q“:WUH /PL

where U is the peak encergy stored in the magnetic field and P

Lt
the power 1055 in the walls.
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Using tie expansion in norrmal modes for the magnetic Green's function
for infiritely conducting walls from equation {t), and neglecting the F. (r)
ierms of the local non-radiation fielids at the sources, and replacing the

eivenvalues W by the perturbed eigenvalues wé frem equation (15)

SAVEeS

pem Fa(r) F_(s)
| e ) € & (17)
rs) = — we L _
Pws —Y S j Wa
ada kb Aok

s function for lussy walls is limited in

Thls approximation to the Green
musi be larce and (1) that it cannot

its use by tne restrictions (1) that Qaa

ve used for modes which are close together,

STATIONARY INTEGRAL EGUATION

Integral Sguation

5 theorem to volume A of figure 1 gives:

qSoplying Poyntings

45.1_ »

Y G -0 - A%
. (B2 d e —_ i — M )iv
\[nA (ExH) 45 = EJ av V( >t 1at Jeiv.

e vwall losses arc tL)HliJOI'aI'ily nezlected, since thelr effcct has heen

modified Green's functions develsped in the previocus scection. By

surning the generating field is 1in the wave uide

in the

to tae left of plane 4-27,

the right hand integrals reduce to zoro, siving

'} 4S5 me E-(HAXE) dS = O. (10)

4]

Fisure 1| — Iris Coupling between a2 Waveguide and a Cavity Resonalor

Uae roaenetic field 1 the iris contains the foilowing components:

-~ T__‘E( ¥ 1., 1
Lo T wilocte i rr’fled +H absorb !
I ﬂ— boWwave. 'u}.\kj:" FE80RAF ( )
wsnero the superscirint ' 97 indicates principal mode and ' indicates

aigher modes,
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vefining: I V. = f H ¢ {(m x®) 45, {20a)
! g ! i i
proportional to the power into the region
and defining: I.l by Hi = Ii hi . plve: (20b0)
- / -(E'l x E.)dS = fhi . (Ei x £)dSs. {21)
- iris iris

Fhe replacement of & by % in equation {21) is permilted by the ortho-

A

srality properties of the normal mode vectors,

. .. O o e b . o
Letting: 17 = I . + 1 rofl ’and sabst.titing cauations (19) and
{21} into {18) give:
0,.,.0 - — — _
= —4 — H! . x &) ds - {z Eyds . (2
I VB = 1rig Jrt?f,l (n}f‘ + abe GAX ) dS (22)

Sabstituting the integral of equation (3) in place of K

et
V»-«

i an:i
refl Cabs

in eguation (22} gives:

150 fhg fg [n x Lfr ﬂ n s) | Bpx E.(s)]

2 = (23)

-I-f_;S fciS [n x'.C(r)]-‘—j\ (2)(1',&,)-[54&)}{5 (s)}

Loprime on a Green's function indicates that the dormminant mode term

1g omitted,
The relative admittance which would be obiserved by measurement

of the standing wave ratio and the position of the voltage miinimuin: at
it I g

a point to the left of plane 2-27 is:

O O o 0 04 .
Y/YD =1 /YU Vg = I VB/YO (vi) (24)

1

The characteristic F’:ﬁlttancc YO of the wavegaide is definoa to ve con-

istent with Y, in B (}‘,"l,) as defined in Appendix A.
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Combining equations (28) and {29} and using the iolluwing principal

mode vultages

0 -— - - - ‘
VB = [nB b's l(“)] "bon di(). {~aveguide}

iris
e - - . _: 4Gt - . -y S
V'A - /iri.: ny X E(r)] T GA ds{-), (resonator) (£3Db)

give the following integral eguation:

- =@, _
[{_ ﬁsrﬁss[ﬁBx}g(r)] . l—ja (ros). HBXE(S)]

(v3)2

o af T o W €3
:f_b_u v ﬁsr[dss['ﬁAxE(ril-Dh (r,s}.[nAxE(sﬂ

Y
Yu H L0 + U )
VB [ )
(e
; W
+ = .
“ 2 Ui
R ]
)
1 + Yy _
R ) (20)
¥, + N oY,

+ YAU

The eigenfunctions appearing in the maguetic Green's functions in the

above equation are defined in Appendices A and B.

Stationary Properties of the Admittance Components

Equation (20} is an integral equation involving tv.o uninowns, the ol
adreittance Y and the iris field {r). If a good apuroximation for the iris
ficld can be obtained, it can be substitured under the integral signs to give

an approximation for the input admittance,

The principal mode admittance function Y AO of the resonator, is
£



i

iacegendent of the chsice of the te al fela 2} Vhe susceptances in the

! t 1
cesonalor ang vavegoiae Y, = | I\, and YI;B = P, respectively, both

nave e sante [ovir walch will be shown o be oo o variationm foro

Loneliry the notation. et

e siationavy soooerty 7, and Yrg will e odven briefly in

Vi

sovelopea by Jo D0 SoncdnreyT T Two adtonal vocations are
¢ o .

Porgtiron eqgaaizon (o) with definttion {200) .

- - (<}
H(.) L) == K (x) Pﬁ {+, ) J5{r).

second, from the Pognting vector and eqguation {24),

Thren the resalt of o0l Ul ying egaation (Le) by o e}l b
J = M J .

o+
s
r

——
—

—
[
-
~
93]

e sarface S agan and dividing tvice by o a

i

thon for ¥owhich ts roentaal with ¥ " and ¥ o ghation (20):

By setting the curven: [ ecoeal to ene, euat oo (20) bocomes .

. - . N - v
npaaton for the dewe srudnaiion of sy ase e 751 Koo {) and

L

ciaration (50). This eguatiorn has been shav Lo Soowinger (o he

o
with respect to fivst order variations of X {: }.

Shile stafionary

I

(0)

SLAanmaey

S IT & A

of the variational integral eguation (30} 5o ot the use of any vaosonable

Appreximation for the sas fleld 1o obta noa goo L roxinat.on

4

trrur in ¥ ois dal taost proorbional to the s

Notes on Leectures of Jul an 9. coanger,

[ N SE AT T

A CE Lltne corar il (1)

3O -

mwaliles Y oaveguiden. M@ . Rao. T.oo {rovbilshed) 1645,
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-

The remaining factor to be cxamined is N7 {rom equation (24),

2
m o0 a5 m 04 L

. -
< il

2.
exmact Mooand é (Iv } is the crror caused by the error

,
e
.

:
P

where N is the

é Fooin the assumed iris field

N - rc; + dnG (520
P = Ein 4+ & En (328)

Subistitution of cqguation (32a) an. {324 into (31) gives the error in W
G £

& (;\-2} /tgﬁm - F(o) S /Sﬁ(r) . Tir) @S |

2 - L = — .
o Ko{\ Fir)u5 /Ko(r}'uu(r}(iﬁ

The raiio N is statlonary with respect to first order variations of K (r)
if:

F(r) = A h(r) in the iris. {(34)

ilere A is an arbitrary constant, which caacels out, since it appears in hoth
. S 2’ .
nwmnerator aina denomianator.  Thus (N ) = 0, if the tangential compo-

nents of the principal magnetic normal mode functions have the same form in

both resonaior and waveguide,
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The integral eguation for the iaput agmittance, cguation (20), consists

of elemonts which arc stationary with ruspoecet to first orucr variations of the
iris electrie ficld XY

)

), whe

1<

1

n the priacipa magnetic normal moue Dinctioas
have the sameoe form i: bHoth wavegulae and resonator.

qu.ti-salcnt Cireuit

Examianationfergation (26) shows thal this infegral cguation can be
represented by the equivalent circuit of figure 2.

The priacipal mode z2lements
1n the resoaalor aro:

1 )
Lo = L, Coy = —zo RO = m.—-_U ! Qo = wlm-;-—"
1 i
Yac = = e |
1 2 2
R o j{wr, - ) @ - w® “’“Jn__)
WX o o
o o
Figure 2 - Eguivalent Circuil

The input admittance of equation (31} has bea2n obtained by setting up

an integral equation at the iris plane 1-1"

whica gives the input admittance at
a plane 2-2' an integral number of half-wavelengths down the waveguide where

the higher waveguide mouss are negligible.
5 E
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CALCULATION CF THE COURLED

Trial Iris Field

A reasonable approximation tu tae field in o roctangular iris ia

b 21/ 2

Elx,vy) == a\l_ cos T (x ~af2) 1 ;_ y - b/2 (34}

‘ L0C

The nurmerator corresponds to the cosine variation of the electrin
fi»ld 1n the principal nede. Tae denorninator makes tace fleld mmiinite
at the top aud botton, edges, as 15 the case o ulifraciion at a shas s
eage. IDnsertion of vruation {(32) into the stationary intesral eqoaoion

{(2€) gives an approxin.ate value of the admmitianc, o»f the resanator,

Coupled O
c
Haen the internal 20 Ao Lo wrall Ioss 18 hizh s0 Lial the resonator
can be approxiviated ov o Lessless networs, the svsved enersy ca uo
calculated fron the sloze of the guscootance curve a4 20ro, wiicen
) 11
f__",l\"t‘fv

P BE
)

€

2

2

8]

Te obtain the conplded O, equation {21) is usod in a mannes zin ilar

to that given by Monthomuoery

0
H
|

)
Aguation {37) 1s not rostricte.d by the conditing 2"%'_{/2 anc (T/Y Y22
et o

used by Montoomevy,

ELxtension of Petae's Lumped Constants (o 'v-Fa_tor! and "g-Faotoe”

1
For the small irises considereaw Dy Hotae ™7, the sane Tunpes con-

oy

1. Montgomery, C. G, Frinciples of Microvave Circaits, 1942,
o 230-234, auation By and (57).
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stants could be used to detorriine if_l{;_ ard Afo. Por larpe iriscs the 73
and the change in rescnant frequency carves do not maintain tac same
functional relationsiup, so it is more convonlent to acfine separate
fanctions. For comrparison with experimental rescles and witin other
analysecs, it is convenient to define a "g-facior' aad 4 Uvefactar! wider
are functions of iris dirwensinns, For small iriscs these {aciors reduce
to the following equations wihere M is the magnevs solarisability of

de - .
Bothe i MLK.S, anils,

e

pIM)° (382 =) el

These factors are defined by the following cquations:
AW/ W = -v /N, (32)

- s ~ K]
(_)C Ng R+ ;\r. {40}

‘where: N

/W p [le (wavemiile) (41)

g —
N, == . fu IrI‘- {vesonaior) (-42)

S

?d == /Z}f( )' Ha d! {42>)

ForaTE wavevuaide: N ~f
Lo g N, =1 ‘n')dDA(_: (44)
For a THEM ., Fesonator: wvith iris contered at

0,C,3 2
u e L/3: N_ =(T/2) r, In (ra,’rl) (45)
For the waveguide and resonator of figure 4 at { ==2220 rnefs. -

N, == i23x10 f:'(rw:ttc:'ter ). Nr - 89.7x 10 ° {rnctar ).
o

This form of representing QC and Mﬁ)la useful in using results from
one resonator in obtaining approximate solutions for resonators havin 5
similar field distribution at the iris.
L2, Betse, F oA "Lumped Consiants for Small Irises™ M T 70

T

Radiation Laboratory, Report 194 (4 -dd), Mar 24, 1
(D 2039).



Rectangular fes natsr

A rectangulir resinator can be considered us L saorted waveguide,

ns are redaced ir.onv trinde ¥ double suma. Tac

o
&
oy
o
-~
H
(@
[
]
L
r
F...
.
.

—
l ' (2) X
iryu) = Tmyn ©0t G nl By alr) Hpy p (6.

The normal mode functions H o 4(r) are deiincu in Sppendic 3.

Figure 3 - simplinics Rectugalar lesonst o

Thviding the oroblemn int, toor paris, toe admiti noe on the waveguide
side of the iris is apar sximately one-azli L too admittance of the same

iris in an inlinite waveguide. The dimensions f the r=2s natoer in Figure 3

. i3

were choasen s tixat the suscenthnce curves LI Noircuvitz could be used,

Letting cothd [ Loequal  cot{L and une respectively for the
|

arincinal maode and higher modes in equation (44) reduces eguatinn {26}

to the f-Nowing [or this case:

13, Marcuvita, N, Wihe Henresentstizn, Measurement aod Caloulationm
of Dauivslent Ulrcweits 1or Waveguide Oiscooniinultie with Applicatiun
t Rectungular Sluts . 77 Microwave Resecren Institute, Polytechnic
R E 4T e T Text: N7 e v A = oy i N
lastitute ot Bro.oxlyn, New York {(1949), Report R-193-49, PIB-137,

Figures 5.3 and 5.4




Dy ase »ftae curves oD B fr o Marcuvite and (e oosadici n that the
imaginary oart of the input adoeitt vnce fanciien o equation (453 in zeeo
1

at resosnance, the cuarves of shitt in resonant freguesaey as o functin of

o

curves of L [ were converted to

——
{

iris dimensions were calculated, 7T
v-fuct- T curves as pl.tted in figure 5 by use .{ causti.n {597,
carves of o owere then calculated {rom equnti n (57} using the

3> and the osrresoonding curves o

[

calculated frwan the curves of figure
suscestince (B / ‘{J) frm harcuvits., The curves of ). for this

. .
rectangnlar res. nathr were then cunverted to a-factor by use of equati.n (40)

and are pl.tted in figure O as curves A0,

Toaxizl R esonatsr

v a rectangular waveguide counlad 10 coaxual res onator a5 shown

in figure 4, the intepral equ-ti-n is the suime as zovation (26), Tlere

»3) 15 the shorted wavegulins Creen's Lunction of equation (44

E—.I

with ¢ +th X‘ﬂ'i,ll"" = 1, since the wavepuwide i ¢ nsidered as going t -

[—1 {2}
infinity on the leit, and (r,3) i2 the resnt.r Green's functi o

'Y

S e 1atinn (T/)) here the

=
r

o {(ri's are the coanial reson tor normal modo

vect rs . 2opendix A



{19}

P or counling between the T 71,0 -mods rectangular waveguide and

mode coraxial resonator of figure 4, the elements of

2

equati.n (2%) are:
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=
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(Y]

o . (46a)
y ) 1y
A
¥ n, 11, §
+ K¢ —_——
n, m -2 YA .

o o
00 0o -
. D
Inyn
ot Al B 'y
i - = W -i'j 4 o
’ I8 M, n
m, o T, 1 U
1=l n=0h ni=l n=0
{T:2) (T M)
(401
The higher racdes valtages V. antd T ST aviimea v
’ Sy, @ S, :

ecoguations (2oL and {Zoa) o

pproariate functions from SAopendis
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Flgure 4 S TR SO RRNE G SURE S o

- - - H o N
GUTL S - B R L SRS SRS LR IS o Y s B LY o
- l\. [ s
. . - o
Pl - ti o oo sumetiun iris : ERANT I

LATe Tiven

a0 8 oI

400y i3 ol tted wr cavve Boin

rlarvse rapecitive irises this direct calovl o oo omes

csep bt the expecliment. l curve thon the rectingular res nat

apnroxirmatl o nSor 7L, Mwnoamination of the cursves in figure o

tht for inductive trese. there s ne need tu make o defciled caloal dion,

Lecause the rectanpulir reconst T oappr imtation Sives o oood aoresment.

i, sidrary of 70 ongrosg, Cabbication Doard, 5 109206710 B .

U anling ot veen saveguides and Davity les onat rs for
dower Cuotout!d, “lectrinics Qesearch Laborot,ry, Universit
Talifornia, nterur WVechaical Report, Series No

&
. Ly Issue No. 65
Nay 1, 1953
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The rrogl mode vectors {or the T.OMA - g ARTSTARTRETE W
R ) ¥
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The v muwonents fthe n rmol vode vootor s i1,
;
Dinined fromy 17, ’.Z‘_ﬁ, ana i of the wvaveguide Hnnbook By cltvivhing:

thoera o the curraent I, . here




(a3)

exceat that the subsoeints (o, o f are used here t ¢
; i ¥ '

;2 ovonsistent orith

tae [0 standard nomen ltre, v hnile subse ripts (o, n) ore used in the

aveguide Hoandh ook, The ressaant frequencies

Are wntecivansd as

foll s
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Fer a short-circuited waveguide e dending to infinity on the left

the admitiance dyadic is {ar r # s

“>
1 (2) - (=) i)
I {r,s) X i q (81,
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This ts twice the Yi{r,s) for a waveguide going t . infinity ot L th enas

s
. . e e RS 5 . \ . s ;
given by Marcuvitz and Schwinger . in the above formalae the I (+)

{-} JH~}, since the source and

[

1(4) terms have been renlaced by ©
Fioled e imfe i Tis aprnalusis s h-th b the sha TY R
field noints in this analysis are both ot the shart clooult, he norr:

rocde funciionsg ., 1, 2nd h, are obt.ined by dividing the magnetic
Stelds 1i.., H.,, and I, .0 Marcuvits 17 by the current I, The zers of
- F <h 1

the ¢ sordinate system is atacornac i the waveguide,n .t .o the conter,
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FIGURE TITLES

Iris Coupling Between a Waveguide and a C.vity Resonator
Equivalent Circuit

Simplified Rectangular Resonator

Coaxial Resonator

£ T and v-factor as a Function of Iris Dimensions

Coupled (3. and Internal Q. . as a Function of Iris Dimensions
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