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I.

Introduction

1.1 Cavity Resonator Coupling Devices

The four basic types of coupling to cavity rescnators are loop,
prove, iris, and slectron beam couplings which are iilustrated in figure
1.1. Coupling by loops was first described by Hansen,® who also noted
that capacitive coupling was possible. Hansen also used Rayleigh'sz re-—
sults on the diffraction of a circular aperture to compute the radiation
losses due to holes in cavity resonators, punimovich treated probe and
loop coupling from a two wire line to a cavity resonator. Ncimanh Ob=
tained the slectric and magnetic dipole moments for small circular and
rectanrular irises in cavity resonators. Condons developed a more general
theory of lcop and probe coupling. Bethe 1ndependently'obtained a solu-
tion for the diffraction of a small hole in an infinite scroené and ex-
tended the results to the coupling of cavity resonators by small irises.7
SchelkUnorfa developed a more general representation of impedance furie
tions for transwmission lines and resenators, and treated an example of
s probe linking the full height of a resonator. Wartime developments in

ooupling to cavity resonators are summarized by the ¥.I.T, Radiation

1. Hansen, W.W., Jour. Appl. Phys., Vol 9, Oct. 1938, pp 654~663.
2. Rayleigh, Philosophical Mag., Series 5, Vol Ak, 1897, pp 28-52.
3. Bunimovich, V,I. Jour. of Tech. Phys (U.3.5.R.), Vol 9, Ne. 11, 1939.

PP 984-~-1004 {In Russian).

1940, pp 1=16

L. Neiman, M,5, Izvestija Electropromyshlennosti Slabogo Toka, No. 6,
zIn Russian),

5. Condon, E,U., Jour, Appl. Phys,, Vol 12, Feb, 1941, pp 129132,

6, Bethe, H,A,, M,I.T, Rad. Lab, Report 128 (V=153), Jan. 23, 1942,
7. Bethe, H.A,, M,I.T, Rad. Lab. Report 194 (43-22), March 24, 1943,
8, Schelkunoff, 3.4., Proc. J.R.E. Vol 32, Feb. 1944. pp 83-90.



Laboratory Serics9 and by the Bell Telephone Laboratorias.m Al four

types of coupli u N
e plings are reviewed by B‘g’;ﬁ}:‘?’ﬁf' - Lucke has obtained ths gl

transmiasion cpwss-section for a z;ohmguhr apsrture in an infinite
12 s

- soreea “V s variatlonal aothod.  yu1eserld has obtained experimental

curves of the couplod  and resonant frequency for one pnrt:l.cular res-
natron anode naonator. 4‘““ N‘Ph'“ list

of refermows 1: innluded in the bYibliography at the end of this

— —

report.

T - - ———

1,2 The Iris Coupling Problem

The simplest and most ;ractiea.l construction for large power oute
put from a rescnant cavity iaf;.rin coupling to wavegulde, DBethea! lumped

constants apply only to small size irises which can only couple a small

_ S / ¥+
amount of power compared Lo the raquirmnta of high power remtron _ ‘

oacillator and amplifier tubes, There is another ndotnod
rror mupling large amounts of power from a resonador which is not
treated in this analysls, manelr « ring iris eoupling te a coaxial
line !he» axis ocoincides with the resonabér axis.

207 9. nintgmry, et. al. Principles of Microwave Circuits (1948) pp 183 - /5(j

10, Bell Telephone Laboratories, Radar Systems and Components (1949)
9091020,
PP 11. Bernier, J., Annales de Radioelectricite, Vol IV, Jan 1949. pp

«l‘ Maltger, I,, I.E.R. Report Series 1, Issue No. 43, Microwave Lab=
,-f oratory, Ue of G. s Berkeley, June 1, 1951.”

Veol. 19
. /% ¥a Balisbury, ¥. ¥, Zlectromlos./Feb 1946, pp 92-97.

Y. TTTTIZH, fucke, W.S., Technical Report No. 25, SRY Preject No,
i/ 188, Stanford Research Institute, Stanford, September 1951,



Since it would be desirable to have a method of approxie
mating the coupled Q for various resonator shapes, it was dew
¢id8d to make this study on a simple resonator which would have
a general usefullness, in that the field distribution ai the
iris i3 similar to various specific rescnators encountered in

practice, A TEM ~mode eoaxial resonator coupled by a

0, 0, 3
rect:mgular iris :.o a ml,ﬁ"' mode rectangular wavegulde is in-
vestigated for the coupled Q and resonant frequency as function
of the :Lris_ dimensions, W Figure'a is a sketch of the ex-
perimental resonator, The dimensions were chossn to be a com-
promlse between a shape corresponding to several resnatron

anode resonator problems and a shape that would give a standing
wave ratic at resonance which could be experimentally measured

by standard techniques,

_- “mn Qtudy is res;:;;eﬁ;c.éd to a single iris coupling a uﬁveguida to

& cavity resonator. The chapge in coupled G and rewt frequency ie
mvutig'atcd theoretically and experimentally. When the dosired soupled
Q is calculated from a knowledge of t.h§ electron bsam input to a cavity
. resopator, then the proper iris dimensions to obtain the d.oaiud Q can
be determined from the results of this anslysis, subject to the error
introduced by neglecting possible higher mode coupling botwun slectron
beam and the output iris, . "

The study of coupling of large irds can logieally px‘oeaed. from the
existing theory for small irises in four steps:

{a) The first question considersd is what is the practim limit



to the use of dethes' approximations in engineering practice,

(b) The next question is to develop a better approximation for
medium size irises. The fact that Bethes! approximation uses
the resulte for a small irds in an infinite plane as an ap-
proximation to the coupling for a small iris in a cavity reson-
ator leads one to estimate that the polarizabiliiy of a trans-
verse iris in an infinite waveguide substituted into the
aquaticons of sethe for using lumped constants might be & bete
ter approximation to the coupling between a waveguide and a
rasonator,

{¢) Then the solution of the coupling problem for a simple rece
tangular resonator when recast into lumped constant form of-
fars a still batter approximation for medium irises.

{(d) Then for very large irises the problem iz to apply the mathe
matical techniques of electromagnetic diffraction theory direct-
1y to the particular iris coupling between a wavegulide and
cavity resonator,

J.3 Theoretical Technigues from Network and Diffraction Theory.

S
H, A. Bethe? obtalned approximate formulas for the squivalent

slectric and magnetie dipole moments peor unit filgld by use of the ap-
proximation ka < < 1, where k = 2T /A and a is the distance from
the center to the farthest point on the edge of the iris, Bethes! re-
aults for the rectanguwlar inductive iris shown in figure 1.2, transposed
into H.K.S, units aret

P/E = My/M = (T /16) 2B A (1.1)

- -
jo—



where P and Mg are ihe elecirie and iransverse magnetic polarizabilities

respectively, He obtalns a change of resonant freqguency ofi

i/2 [P E &, + My HogHl, + 3 1
AW o _____.m_u_suln.a_ %% "2 fogaq: (1.2)
L Lﬁf[e.ls +,uri2] dv
where E, and H, are the incident [ields, and Ej and li; are the fields
exiatsd on the other side of the iris, The coupled (i is:

Q, _ . wls _ (1.3)

="z '
i % H H + M, ﬂomﬂa3 + Phonman

8, = A/? d{}n x &) * H, as
s
crosswgecti n

af wavegulde
Uy 1s the peak energy stored in the electric fleld of the rescnator,

Dyadic Green's functions have been applied to waveguide and
cavity resonator problems by J.0, Schuinger;§§ He gets up an electric
and magnatic dyadic Green'z functlion satisfying a dilferential equation
derived from Maxwelli's equations and having Lhe boundary conditions:

) o (2)

nx (r,e) = 0 and n x curl [ {r,s) = 0, respectively on the

bounding surface S, For a source free region the electric and magnetic

fleids can be derived from the tangential electric or magnetic field

oh the boundaryzuagng'i 1§Aphe unit normal into the region:

E(s) = \j / nmg() rﬁ(l)(r ) as(r) (1.4)
- e
Aoy = Emes 7 @ir.e) asin) (1.5)

o}

These dyadic Green's functions can be expanded in the normal modes as

rollowas (in M.K,5, uniog, .

T iU Y9, oohwinger, U.S., MJ.I,T. Rad. Lab, Report 205 (43-34), May 21,
1943,

-&a



H (1J(r.a) = <+ guiﬂ%ﬁ:' A (r) & (s) (1.6)

W, L K (r) A (s )
{a ng 'f!é L2 Ay

r - -

b “\-,_ ‘ (r) F (S) i — -

M2 gy = t1o{ L .JL____J&__m - A F (r) F(s) (1)
Schwingefih applied a variational principle to the solving of

diffraciion problems by putting the integral equations (i.4) and (1.5)
into a stationary fome where the error in the answer is proportional to
the square of the error in the approximation used aa a trial fieid, For
example, where I 1s an unknown admittance, h(r) is the dominant mode
function, K%r) is the unknown field in the apertuce, and EFEQ,:) is ty.-

QCreen's function for the reglon, “Sehwingzer obtains the following intﬁ#

gral aquations; " where n, is the unit normsl into the resomstor volume,

H(s) = I his) ..j K (r) * ”‘2)(1‘.-) asfr) 6&)

Ty 2 N
. gh(rJ hir) ds(r)
% = 1-; =8 (Ex A) 48 =

Jas¢ yd(s)K{r)'p(ahra)"%é})
Yz * 1 :45
%i ngfr)'hh)d(rh.

(1.5)

(1,30)

: Zquation (1.8) is identically equation (1.5) with K, = ¥ g a  hen
Y i5 a real number, equations (1.9) and (1.10) respectively give a lower
and upper bound for Y upon insertion of a trial value for EﬁA(r).

In many diffraction problems such as thin irises in infinite
waveguides the imaginary part of Y =z (G + JB la 211 that 1z required

for a solution, In cavity resonator coupling problems the wall losses

o3, Saxon, D,5., Notes on Lectures by Julian 3chwinger, Unpublished,
but widely circulated, Feb, 1945. _ $ -
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make a finite conductance, G, at resonance which requires the removal
of the singularities of Green's functions for the theory to correspond
to the actual situa.t.iolon. To remove the sinpuiarities the,%aethod of
perturbation of boundary conditions developed oy Feshbachn can be

used, The boundary condition nox curl ¥ = 0 is replaced by:

- - -— - iy .
nxocurl Hx{nxH) +«2Z (1,11)
-3
where Z is proportional ito the wall impedance, Where r‘ (2)(1-,3) is the

<>
Green's function with infinite conductivity and _G(z) (r,s) is for finite

| o (tad)
conductivity: ?(2)(3;,3) = P(e)(xna)

[

TS - - =
= : y
,/nrz ¢ (3)(x,r) [curlr M2 (r,8) « 2 T (2)(2',:)]18(:')}

oS S .
1 (2)()!11') can be substituted in place of 6(2)(3:11') under the inte-

gral sign and then the integration gives a first approximation to

“E(i’) (xll‘). Repeated substitution of sach approximation to obtajin the

next constitutes an }teration met{lgd for removing the singularities,
Marcuvitz™ and Oliner®! have used the variational method of

Schwinger to obtain the values of the equivalent circuit components of

irises in infinite waveguides, in T-junctions, and radiating from a wave-

guide end into free space, A special case of an iris coﬂﬁiéﬂhortﬁ

&
circuited waveguide has been described by Rohert Beringer.n “

77 X5, Feshoach, H, Phys. hev, Vol 65, June 1 and 15, 1944. pp. 307-318,

i+ ¥, Marcuvitz, N, Microwave Research Institute Report R=193-49, Plb
137. P.1.B., New York, 1949.

/? ¥. Oliner, A.A, Equivalent Circuits for Slobs in Rectanzular Waveguide.
Air Force Cambridge Research Center, Augsust 1951,

2 A&, Montgomery, op. cit. pp 231-234.

-f..
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Infinite Plane and Infinite Waveguide Approximations.

3.1 Infinite Plane Approximation

Bethes! lumped constants for small irises come from
approximate solutions to the diffraction of an aperture in an
infinite plane. A further approximation is introduced by using
these results in the coupling between a resonator aeg waveguide,
Bethe speeified the limitations that ‘

(secy Y e 4 ady > Ly,

To determine hew stringent limitation (3.3)

must be, the experimental results on the TH&Q’O,3 resonator for

Qg and f5 are compared with Bethe!s formulas in figure 3.1 and
3.2, |

For the small irises considered by Bethe, the same
lumped constants could be used to determine Q, and fo. For large
iriges the Q and resonant frequency characteristics vary differ-
ently so it i3 more convenient to define separate function. For
comparison with experimental results and with other analyses,
Bethe's results from equations (1.1) - {1.3) are transformed

into the follog?ng form: (MX.S. units}

! aﬁj 3, : .7-
12 =) vl
{iris) 88 (iris)
4 Ug (3.3)
» TR <
Rg: 5;;){_3? B = B
(waveguide) (resonator)

Putting (3.3) into (1.2) and (1.3) gives:

s [z =V AN, (3.4)

o

o

/6



Q = Hgca-k (3.5)

y,

For a TEl,O waveguides KS - — (3.6)
For a TEHO 0.3 resonator with rectangular iris centered at u
»vy
For the resonator of figure 2.4 at £ & 2820 me/ss
N -123 x 106 (meterj)
7 gq.y »
N = W x 10 (meter3)

For a rectangular iris, using equations (l.1) and (3.3)s

- ol (@]

[ a<b 2 %5

vz Q8 Tl by ® (3.8)
~p X 3 ] ot

For this particular resonatori

ve 31..8::13'0(2{3 Q= ‘—"5%-‘—12?—
= S

These functlons q and v are plotted in figure 3.1 aleng with the
experimentally observed coupled @ and shift in resonant frequency
for the TEHO,O,B resonator, The experimental results have been
normalized by use of equaticns {3.4) and (3.5) for comparison
with Bebhe's results, This ™normalization" puts the experimental
results in a convenienﬂt?g; use as an approximation to other
resonators having a similar field near the iris, Thus the ex-
perimental curves of q and v can be used to estimate the Q, and
4w fins  of other resonators by use of equations (3.3) = (3.5).

Comparison of the experimental and approximate theory
curves shows that equation {3.1) can be more specifically speci-

fied by & = e/a < 0,2 or ke/2 < 0,3 provided equation (3.2)

E
17
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18 satisfied when the well thiokness correction is used.

b satiefieier; For @y 1.0 and & = 1,0 Bethe's approximation
again comes close to the experimental value of Q,. This does
not mean that the approximation is valid for large iriees, but
is more of a coincidence,

Any approximation for use with large irises must account
for the resonance phenomena of a thin half wave capacitive slit
and equivalent resonant irises as is shown by the minima in the
q curves and by the crossing of the v curves,

An improvement of Bethe's approximation would pe to
convert the transmission cross—sectiong}for a rectangular slot
in an infinite plane obtalned by Luakel into an equivalent polar-
izapility. This should be useful for larger irises, because 1t
retains the half wave resonance phoncmena which iz lost in Bethe's

approximation,

3.2 Infinite Waveguide Approximations

The next step is to try to extend theoretically Bethels
svsten of lumped constants for amall irises to the case of medium
irisea, What would appear at a first glance to be & logical way
is to use the known susceptance of irlses in a transverse diaw
phram in an infinite wavegulde as a closer approximation, How
ever, it will be shown that this doesn't gain much, because it
is the behavior of the iris near the shape for iris resonance

that is the more important factor for medium and large size irises,

2§;§5 i&cke, W.S., op, cit, figures 2 and 3,



1Y, Dyadic Admittance Functions Including the Hesonator Wall Losses,

A.1 Vall Losses in Resonator Problems

The introcuction of a normal mode expansion of the
Green's function into an integral equation in variational form
like equation (1.12) only gives the reactive part of the admit-
tance or impedance. To obtain the real part of the admittance
near a particular resonance, the normal mode eigenfunction for
that resonance must Le introduced in a way that accounts for the
resonator wall losses, If the Green's function is modified to
inelude wsll losses to give the finite conductance a2t regonance
which corresponds to the physical situation, the singularities
of the Green's function for each eigenvalue @ = W, is removed,
which destroys the orthogonality condition of the normal modes,

The perturbation of boundary conditions of Fxéshbach

will be used here. In equation (1.11) the wall impedance dyodic

g Soly
becomest Z- 1%, ( - (.1)
fap (e 2.0
where - _ L.2 and éﬁ = 4,3)
where . is the conduetivity of the wall,
Using eguation (1. 12} and replacing the G( ) (x,r)
under the integral sign by {W? (2) (x,r), gives the first ap-
proximation: r”1 x,n) 7
= (2) )
G (x,8) =~ \ n xr’ (x,u)° l: [ % v8) 24 dS(u) (bo1)
8 )

and using equation (1.7) for i (2) (x,s), and dropping Fk's

having zero curl, givess



“(2). =2 - w20 F(x)F(a)
G sz')_,r' 21,8)+Z Z (_‘J{f _ 2') (12 4} {L.5)

vhere T, :[.3" ,‘;;(u).g. 'iﬁ(u) z, a3(v) =

(4.6)

pF3
whers e = iwi[ )( f d') (5.7)
3 [\[;_g T (r) Fylr) as(o)

The minus sign for F  4in equation {4.6) comes from the boundery
econdition (1.11) and the definition of the dyndie " 1n terms of
T and the tangentisl Ei

Rt;GxH)Z': =R Z,

e ¢ 1s the internal § due to the wall losses, If thore are

other irises or coupling devices, Q is the loaded Q ineluding
the wall loases and the energy lost through all coupling devigea
axecept tho input_a_irls.

Equation (4.5) is the first approximation:

Putting equation (4.5) in another form gives:

o2, wzb(xma) s EE Lo !'(x)F (8) 2 (4.8)

el )(“"n -mz)

Substituting equation (4.8) under the integral sign of equation

. h ives a second approximations -
(1.12) then glves a s PR¥ » &nd substituting again

Yoo azt.hird a.pproximtion:

% Note that this definition of Q , dififers from that in Mont~
» Principles of Microwave Oircuits (1948) p 222, in that the
'i‘q w‘,‘ 7 the wall impedance iz replaced by Ol
_ _ L



The third approximation is:
f'Z_ F (0)¥_(s)
L 2

%n 4.4,9)

ST BdxEa(s)
’ -(3‘*')1{? S F
A C R YO ) }7

_(’w)i 3 ‘\?_iﬁ_r%‘&dx)rr(l)

55 03 e 2 (o )

-(1&:1)322§§r PaFutis E (x)Pgls)

5 (:28) U2 5= By e )

Y
S

6D (0 2 -1

')

(449)
The nth aprroximetion can be wetitten down by inspection of aquatiio;

(4.9). To be of practical use in ezlculations, the perturbed @reeon's

funotion must be obtained in closed form (i.e, the funotion must be
in elosed form at each resonance).

Gh.z Perturbed Green's Function.
To find a simple closed form for the basic

terms in the perturbed Green's function of equation (4.10),
assume that the cross coupling terms can be neglected so

that Gn(z) (x,8) becames from the diogonal terms of equae

9 o | .
tiion (4.39)) WJQ % -z,—ﬁq L
:-"101(12)(::;5) >+ 1“; 2 " (x)¥ (l) ('-'wi-‘;,, K. )

P (4.1D)
= .
) = +“= (§.uF .‘A)k
s 3 /‘; ‘.-T‘—'ﬂ"l
E:T’ ( Y, - ) (4.12)

25
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b

To have & finiis admittance at resonsnce

~ should converge to something like the following:

. 1l A

o - -

., T R P4 O e,

SRR |
- ) ;
~ -~ M [
"'4-’1.
< 5

Expanding lp‘a‘ and Cﬁﬁand comparing terms;

Mt:%  then by Petroe 748:

i ..m;.*. 1+ 2t2+3t4*4t6* XY :

{ 1 . l+t2+t‘*t6+ srs B EEER W

Wk

§ :
et }
+

-
‘ (3. Fu-t)

Sl 1+3t246t4+ 101-.6+'"§ \

i

w® L -

3
wF )7, "
..._..........._.(--’ ;);1+4t2+10t"+20t6+"?'

v

{L.13)

1 _‘“ ssavesseRe ;

K -



Expanding ~ by Pelrce 7461

L1}

- L
(%= pE ) 80*
2 R 2 3 n
" + fof ¥ JwE el el L {Wﬁ - wE, E
q--"::'i 1 i W{ -4= ,,2 5+ 3 +uoo|o:‘
1 1 4 t2'+ tﬁ—* t6 o P4essor e v e
WE,, R o
e R R LR IR E Rk LI
L X |
e JWE . 2
X, - wz ; 1 * 3 % *l#tl..lb!tt. m (a.l&)
o IWEyy 3
;- -_._,.._._2 . -:‘ 1 + OeEPEdRssESRER LMY ‘;‘
i kS w - _;

Comparing equation {4.13) and {4.l4) shows that they corres.
pond term for term. Although the individual rows of these
equation diverge for WX 2 W the function é .. has the
finite value~1/3wF, .«  at resonance, Since \f x_ has been

shown to correspond term for term with a series which con~

verges, Y@g also converges.

2/



The magnetic [leld in the iris contains the following componentss

o o 7 .
Hipig = ¥ incident * Hopetiected * B orlected * Habsorbed (5.3)

Defining: Iy 3 = (Hy . 6y xEy) es o (5.)
| proprotionel to the

‘B
and notin"a . I hs th equation (1. 8530?! T into the region,
{1 = &4 94 them

Vi = | hi . (&l x-&l) ds --€ 'hi . eﬂi Xﬁ) ds (5.5)
Aris Airds

The replacement of €5 by £ in equation (5.5) is permitted vy the ortho-
zoraliiy properties of the normsl mode vectors,

Letting 1° - 10, . 1° :
t ﬂg‘ = e =1 repl AnG substituting equations (5,3) and

{5.5) inte {5.2) gives:

IC‘VE;: TH ey e Iny X E) dS-l-“H . (i, xE) ds (5.6)
i?is 'irls

Substituting the integral of equation (1l.5) in place of ﬁvrgfl and

.5 L0 equation (5,6} gives:

f‘ fﬂs d3 anE(r5¥% B %r,u)-‘anE(s)a ;

I°V§. +, =(2)

4. dS ;ds nAxE(r)j' (r,s)° ‘ﬂgﬂ(a)jj

(5.7)

g

A prime on a &reen's function irndicaztes thalt the dominant mode Lerm
i omitted,

Thae relastive admittance which would be observed by measurement
of the standing wave ratio and the position of the voltage minimum at

e point to the lef{ of plane 2-2' lat

o o

b 4 I I°v (
—_— - .ﬁu - g%z 5.8)
16‘_ !o B ~ !b



The characteristic admittance Y, of the waveguide is defined to be con-
sistent with Yy in  B(2) as defined in Appendix B

Combing equations (5,7) and (5.8) and using the following prineipal
mode voltages:

VZ - ;na X E{(r} . h dS(r) (waveguide)
irls
) (5.9)
7° - n, X m(r) . F das(r) (resonator )
A gris o4
gives the following integral aquatigyfz),
. B, dS anE(r) + g {r,a)s lgxﬂ(s
v5)?
A i (2)!
| vﬁ 2 d.s dS n‘lﬂ(r) ‘ (r,a}' nAIE(S) -
L R | 'y
T % ;  (5.10)
: . . é
A S S 1

.

1 g . L
Equation (5,10} is in stationary form like equation (1,10). There~

fore, a good trial value of E(r) will give a close approximation to

/Y.

5.2 Equivalent Circuit

Inspection of equation (5.10) shows it to be in the form:

-3 :

iN

This form leads to the following equivalent ecirouit:



The transformer ratio ecar be a complex number on account of the curva-
tive of the wall separating the waveguide and the resonator. To take
aceount of the finite wall thickness of the iris, the ideal transformer
can bDe replaced by two ideal tranaformers with a2 short section of wave-
guide {transmission line} betwsen them, Vhen the iris width is less
than a half wavelength the two transformer ratios would be complex due

to the imaginary nature of the admittance of a waveguide at a frequency

below the cutoff freouency,
correction for wull thick

. il b il WG Ll iR

For most prectical cassa the sapproximate
g8s cf section 3.2 1 T

g

At resonance, Y is real, so the resonant frequency aan be
detsrmined by plotting Y,n, I}, and I3 a8 functions of frequency and
graphically finding the frequency for which:

i, YwdB= O (5.12)
The coupled | can then be found from the slope of the

4,,.
susceptance curve st the resonent frequnncylﬁ

G = "ﬁ; - (5.13)

i B '('231‘5?“”’2%5“' RO /XY Princibies of MisTowave Cirguits
. po .
= 1

3



To make the transformsr ratio B equul to one for simplificutien,
the wavegulde is made to have the smme dimensions af ths rescnator,
This reduces sgnation (6.2) to:

1:31 g4y ”“’i (6.27)
- 6L A
Using the aporoximsetion of equetion (6.26) for all modes sxaept

the TE. _ wuode and squations (6.8) and (6.12) to sisplify (6,27)

150
reosults in:
I .l . .
‘c"%o i S0, t1 (B eotig o) (6,28)

The resonant frecuency is determined by the value of 1,0 whioh
makes the susceptsnce 2erc as reguired by equation (5,323,

The 1iris wuscsptance B /Y, is taken from the wurves ~f Marcuvita ,
items: 1 and © in Apprendix ). The resultent resonant frequencies
for the resonator of figure 6.2 are plotted ir figure 6.3 in the
form of the fractlonal ghift én resonant frequenay frem the

7

frequeney of the unloaded resonstor, et

e
.

Part of the runge of the TEI,OR mode 1g shown in figurs 6.3
to illustrsts the behavior of capaé;tivu irises, Exsmination of
the curves shows thet if an capacitive iris of serc height ( = 0)
and full waveguide width {=¢ =~ 1.0) were cut in s TELQ’l
resonator, there would be ro {requency shift, but ss the haight
is incress:d or the width decressed, the Irequency weuld increase
along curves in figure 6,3 which join up with the next higher mode,
the TE 1,0,2 mode. Thus starting with a thin sapacitive iris in the
T8y ,0,1 mode, then imcressing the helght untll 1t is s resonant
iries, followsd by docreaskng the width through the inducti-es raglorn

one sands up width the TE mode.
1;0,2



This trunsltion betwe-n two modes «s the irls dimensions are
changsd has ita counteipart in accoustical theory. Harris and
Feshbuch have shown thut the accoustiesl (1,0,0) mode shifts in
resonant frecuensy towsrd the (2,0,0) moddsss the door betwesn
two rectanguler rooms is !idonsd.g +1

To obtain the sounled ¢, eguation (5.13) is nused n & manner
30
similar to that given by Hantgomry‘,ﬂ{ﬂn' in which the snergy
stored in the resonator and in the waveguide st the iris is

obtained by use of the derivative of the susceptance et s pole
of the resctance, This formula appliss strictly to losselss

\ g g 2
“°xz&)§;%i=1%§i)ll+@-:-)} (6.29)
networks, but is a good approximetion for highinternal Q’s
&8s sre ususlly obtsined in miorowave cevity resonators,
Since the investigstion of large irises covers a range of /\ g
between 2L and 4L the conditions L2A/2 and (B/T5)%> 1
used by Nontgomery cannot be usad in thls cess. These two
conditions are not contuined im squation (6,29}, mo thie
squation cen be used for the full renge ol iris dimensions.

Curves of G es & function of iris dimensions for the rectangular

-

resonator of figure 6,2 are plotted in figurs &.4. Thess curves
b.

1 _
are obtained,finding the AW/wfor & glven ot and(} from figure 6.3

and the corresponding B /Y. from the curves of ltsm & of Appandix P,

1 &. Harris, C. m. and Peshbech, H, Jour. Accousticel Sos. of Amepl

Vol. 22, Sept 1950, pp. 572-578,

% @, Homtgonery, O C Ixlusioles of diereways Sireuite(1948),
PPe - .

4}
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and then inserting , _, and B /Y, into squution {6.29),

4

6.4 Use of Rectangular Besopator Resulis ss au Ancroximation for
Besopatars.~% Other Shapes.

The curves of Auyu) snd Q. a8 & function of iris dimensions
can be converted isteo the functions v and q by uss of equutions
(Baéh{3a5i§3=3). This permits the rssults on this particular
TEy 0,1 rectanguler resonstor to be used &s an spproximation
for other resonators having & similar field distribution in
the irie. This approximati-n is squhtkalent tc using the

rectangular
Gre:n's funotions for this/rezonator in place of the correct
Green's functlons of the resonator under investigntion. in
addition to the other approximstions already mmde in this
rectangular resonator.anslysis. 3
Using the energy storage formusd® from Remo and WMBW’E

Ug = < ARk Rz EFE.J.‘_
E B ﬁ G P;\g
in fquation (3.3} gives:

4; ¥ Ramo, 5. and Whimmery, J. R. Fields and Wavs
(1944). pp. 383-389,




whiaﬁ would be more likely to produce closer agreement with
experiment 1s to use a more accurste trial field in the iris,

Forf3 = O.1 the approxinste curve A depurts more severely from
the experimenial results for irises larger than y = 0.6. To obtain
a mores socurste curve for larger widths, ocurve B was celsulate: by
use of squation (7.32) in ~hich the mz,:.,}. mode which crosses
the principsl mode 1s simply omitied. The freguencies #ffd/ used

in this esleulation were the approximmie theoreticsl frequencies of
Tigure 7.4. This spproximation comes closer %o the shape of
the sxperizentasl curve. To cblain grecter sceuracy it would
probably e necessary to both inoclude & second tera in the
trisl field 1n the iris end to retain the wall loss terms in
the Green's functions for the prircipel mods, the crossing mode,
and possibly the closest modes on esch side of the rsonssnt
frequengy., Khen the wall losses sre included, the sizple
foraula (5.13) for the o upled { is no longer valid, a0 for
scoh iris slige a number of points near the resonsnt frequenocy
have to be celeul=ted, so that the caleni:stions become nrohibitive,
For practical ecslcvulltions the recltengulsr approximation of the
axporimantal ragvlts on 2 slmller cavity can be uwed to obtain

4 remsonuble approximation for the coupled Q.

e

™
L\



susoepiance =t resonance. For larges powsr output the iris susceptanme
=55 total
contributes vswme-Sitide to theldddhdldr/sunceptance so that the
rescnant fre-uency stdfts to & valus where the resonetor appears
wore like & cuarter wave shorted Iline than the original hwlff weve
line.

The oxlension ol Bethe's formulas by replacing the lumped
constants by constants deteruined by the susceptunce in an
Infinite wavegulda doesn't extend the anulysis to the large
po{mr output case, because it doasn't take into mcoount the
zaro 1wla sesoeptancs condition, Howsvar the transverse iris
suacertenne in a waveguide onn be uyed to obtaln recsonebls
approximete results, 1f the regonator has fields 2% the iris
which spproximets soms resonntor with syee of sywmetry which
permit 1t to be treatod es & shorted leongth of transmissi n
iire,

The integrel equetlen for the input admitisnes of & cavity
resonator coupled to & waveguide threugh &n;;;;:an at in
Jo . Schewbnger's veriticnal form, pialds & rzlatively simple
gguivelent circuli. lowsvor &t the junction of a curved wall
resonaotr with & rectanguiar waveguide the explicit formu:lss
for the susocaplance of waveguide modes tome out in a series
form which contelns the sum &nd difference of & great number of
terms ofthe same order of magnitude, whish mckes preaise ssleulations

impractic:]l in such cases.
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There is a differencs in the way the waveguide and
rasonator modes contribute to the susoeptanes in the equivelent
cirouit, The modes on the wabagulde slde appeur ss inductance
for the TE modes snd capacitance for the T modems. In the
resonstor side the mdas wiose resonsnt {requancies are below the
operating Lrequency appesr as ospeci tences while those above appear

A

as Inductances. This difference is due %o the sktuation whare f} ' L

T

the axis of the wavegulde und the axis of the rescnotor p oL g

are not in the seame direction.

Close agreement has besn obtained between approximuts thsory
and exporiment for the coupled § of s coaxiel resonator coupled to
the a rectangular waveguide from the the curved side of the

regenator through an inductlve iris., The fact $hat close
agreement was obtained with the following approximetions
warrants careful comsiderationt

(1} The curv.ture of the irls is neglected,

(2) The Green's functions for a r-otangular resonator
ars used instead of those for & coaxisl resonator,

{3) The position of the iris is shifted from the sscond
nexinus of the magnetid £1-:1d to the firat =ax mum at iho anc

af the rsaonator,

AN



