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Summary

Since information content and redundancy vary in
documents of different types, these variations must be
measured to classify the images for efficient compres-
sion and transmission in an automatic document-
handling system. Measuring the €-entropy (where € is
the scanning resolution), we compared information
content and redundancy in numerous examples of three
major types of documents. We then plotted the rela-
tionships between classes identified and compression
ratios reported (theoretical, simulated and actual) to
indicate the state of the art. Improved compression
ratios may depend on adaptive scanning, which can
identify each document by class and switch to an appro-
priate compression code.

Introduction

In an automated information storage, refricval and
transmission system, encoding of images by linear
scanning, as in ordinary facsimile, is not generally
satisfactory. It may take too much time on the com-
munication channel or (depending on the trade-off of
time and bandwidth) may require a very large memory
for storage. Since most document images have con-
giderable redundancy, code compression can profitably
be introduced to minimize the time-bandwidth product.
Although savings of the order of ten to one hundred are
possible, the factor in practical coding systems is
much lower (roughly three to five) because signal dis-
tribution properties vary so much from image tc image.
The practicability of code compression depends upon
the structure of the total system, particularly upon the
availability of processing logic and processing buffer
memory. It should be possible to develop an optimum
code compression system for each class of documents
-~ typescripts, drawings, photographs, etc. If a pre~
scanning device could determine the kind of document
being processed, the logic could then switch to the
appropriate compression coeding system and much
greater economy would be possible. Before we can
design such an adaptive system, we musi know the
types of documents to be classified, develop means of
automatically identifying each class, and select the
best code-compression scheme for each class.

The goal implied can be described in this way: We
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want to obtain the essential information from an image
(of a document page, for example); convert this infor-
mation into a form suitable for transmission and stor-
age in an economical way; and retrieve {(then or later)
the coded information, transmit it to another station (if
required) and decode it to reproduce the original form.
By original form, wc mean that the reproduced copy
must be ahle to scrve the same purpose as the original,
whatever that purpose was, and serve it equally well.
In the copy of 4 printaed page, cach transition hetween
black and white must he within 1 € of its original leca-
tion (where € is the resolution of the scanning system).
Repeated encoding and reconstruction introduces a
decay factor, and this becomes important in the evalua-
ticn of a system.

Many factors must be taken into account in solving
this problem: buffering requirements for various
schemes, for example, and economic {rade-offs between
coraplexity of terminal equipment buffer storage, pro-
cessing logie and transmission costs., Such considera-
tions arc beyond the scope of this paper, but wait upon
the questions we consider here: (1) How much of the
information in any message is necded fo represent that
message uniguely? (2) How can we strip the redundancy
from a mcssage so that only essential information need
be transmitted or stored? (3) How can we most effi-
ciently represent (encode) that minimum information?

In our theoretical analysis, we assumed certain
restrictions on the reading and writing techniques: that
both are incremental, providing a serial flow of infor-
mation; that a prescan precedes the encoder scanning
spot at a variable distance; that reading, or writing as
well, can employ b row of seanning spots in a vertical
or diagonal linc for multiple scans. The prescan and
scan can be of different types -- for example the pre-
scan could be linear, with a digital facsimile repre-
sentation being stored in a computer buffer; the scan
could then be the processing of the bhuffered informa-
tion. In such a case, the compression coding would be
software (a computer program) insicad of hardware.

A device employing a single coding svstem with a
few adaptive featurcs could handle a varicty of docu-
ments by changing speed, by grouping lines vertically,
and by skipping blank lines. Ideally, it would be able
to revert to straight facsimile whenever the detail of



the image departed too far from the conditions for a
particular code. In a software version, the mechanical
prescan would be linear; variable-speed scanning,
grouping of lines, and skipping of blank lines would be
alternate paths in the computer program.

Description Capacity, Information,

Entropy and ¢-Entropy

There are several approaches to calculating the in-
formation content. If we have a way of cstimating the
number of different images (w) that can be represented
by a page with a specified resolution, we can consider
{(w) the "description capacity. "! If we take each of these
possible images as equally likely, i.e., p = 1/w, the
entropy is

w

I= E B, log p, =W (1/w log w) =

i=1

~log w.

If the spots are quantized into a binary coding, 'black"
or "white, ' and if H is the number of spots per page,
then

w = 2H, and I = —10g2 (2H) = -H.

The quantity I is the "entropy, ' as defined by Shannon. 2
The number of bits (binary digits) H, is variously iden-
tified ag the information content, communication
entropy  or negentropy (negative entropy).

The number of bits per page depends upon the size
of the page, the coordinate system (i.e., recctangular,
polar, bipolar, etec.), and the resolution of the scanning
system. In this report we assume rectangular coordi-
nates, and source documents 8 1/2 by 11 inches; and
introduce the term "¢ -entropy'’ to identify the reference
base in termgs of scanning resolution, as has been done
by Vituskin.® The number of bits /page can thus bhe con-
sidered the source entropy, the measure of information
content,

Since we do not have detailed knowledge of the con-
ditional probabilitics of black and white spots in docu-
ments, we must approach the problem by linding coding
systems which when used with experimental statistics
give upper bounds on €-cntropy. For lower bounds we
look for character recognition examples of pattern
recognition  or simple documents constructed in such a
way that their images can be redrawn at the receiver.

Definition of €-Entropy for Image Classification

In reviewing the bounds on the communication
entropy required for different types of documents, we
shall use Vituskin's analysis5 for simplified cases, and
usc McLachlan's description mechanies! to obtain some
upper bounds on the description capacity of certain
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types of images. For other images particular codes
will be used to get upper and lower bounds.

The relative €-entropy concept applies to classes
of mathematical spaces which give indications of being
useful in image classification, and ean he developed to
apply to practical cases. Feinstein? pointed out a spe-
cial case of a theorem {rom Vituskin, and examination
indicates that Vituskin's work may be quite relevant to
the image classification problem.

Vituskin's concept of relative ¢-entropy corresponds
to the logarithm of McLachlan's descriptive capacity of
the document page. McLachlan carries his analysis
over a range of physical systems, while Vituskin
carried his analysis over a range of mathematical
spaces. The convergence of various series represen-
tations of functions permits the introduction of two
concepts that apply to metrical spaces -- absolute
€-enilropy and ¢-capacity.

Let F be a physical space such as the x-y plane in
Fig. 1, where Fuy, 1s a subsection of specific dimen-
sions {e.g., a = 8 1/2 inches, b = 11). Let 8 be the
number of bits per sample point of the net, giving 29
levels. For example, black and white (two levels) cor-
respond to =1, and 20 =2, Three bits per sample
point { = 3) would give eight shades of gray; five bits
(8= 5) would give a 32-level gray scale. Sg¢ 8(Fa.b) is
the coordinate net covering space Fgpy with resolution €;
and Wt_e, the descriptive capacity of the minimum
number of points of thal net, indicates the total number
of different images which SEB {Fap) can describe.

] Let Igs {Fap) = logg W B (Fap).
I [P(Fap} is the €-entropy of the subset of set = Fagp
with resolution ¢. The smallest resolvable spot is a
sguare of side €. This is analogous to Vituskin:

2] -
H (P log2N€9 (F)

and W€e (F,r1 ¥ corresponds to McLachlan's descriptive
capacity, w.

Redundancy in Basic Classes of Documents

Most document pages are identified as belonging to
one of three gencral classes: continuous tonc (includ-
ing photographs); handwritten, typed or printed text;
and line drawings. These are taken to he the kinds of
documents to be identified, and we will assume that the
images can all be described by rectangular coordinates.
The information content of photographs can be indicated
by a ten-level gray scale. The second class fusually
text composed of alphanumeric characters) has two
levels, black and white; 11-point type and pica typing
arc taken as typical, with black space allowance corre-
sponding to normal typed pages. Line drawings, in the
third class, are also two-level, black and white; esti-
mates here have been based on simple sketches and
circuit block diagrams.



The whole range of documents is plotted on a loga-
rithmic scale in Fig. 2, wherc the vertical scales show
hoth description capacity {on the left) and ¢ -cntropy {on
the righty. The latter is for the specific case
HB) g9 {Fyp 5, where R means rectangular coordi-
nates, €= 10,02 centimeters (or 125 scans/inch}, and the
documents are 22 by 28 centimeters (or 8 1/2 by 11
inches).

Assuming that these are human-readable documents
and thal the output should meet the standards by which
the sourcce documentis arc judged acceplable, resolution
compatible with the powers of the human eye is our
natural goal. A resolution of 125 lines/inch is taken as
standard, which means a capacity of 1.5 x 106 binary
digits per page (8 1/2 by 11 inches)., Where a lower
resolution is acceptable, that number can be reduced.
For 100 lines /inch, for cxample, a page could be repre-
sented by 106 bits,

The possibility of code compression ~~1.¢., of
reducing the number of bits which must be sent to convey
a given message -- depends on identifying and elimina-
ting redundancey in the original message. We have tried
to determine the redundancy range for each of these
classes, since any adaptive seanning system for gencral
document handling would necd to be able to accommodate
itsclf to these ranges.

Figurc 2 assembles the pertinent delails for more
than thirty specific documents or kinds of documents,
and organizes these examples under three general
classifications: photographs, tvpescript or print, and
drawings. The plotted points are derived as explained
jn Table 1, from References 8 through 15 cited in the
table, We shall first examine one case from each of the
three major classes, and then consider intermediate
cases.

The third column represents the ¢lass of black and
whitc photographs with a ten-level gray scale. The
boundary range is hased on three sample calculations:
(d} represents an upper bound estimated by the change
from case (af) binary to case (a), ten levels, (In Table
1, this is rated by the change of units from hartleys to
binits, beeause this case {s equivalent to a change of log
from base lwo 1o base ten.) Casc (v} falls slightly lower
because MceLachlan did not count the margins, Cases
repeated in the literature (see Ref. 16, particularly IRE
Trans on I'T) suggest {q} as the approximate lower bound.
Falling below that, case (e) shows the effect of reducing
the bandwidth by replacing approximately half the bits by
random noise. 'This economy is practical because the
human ¢ve can smooth out enough of such noise fluctua-
tion to recognize the reproduced image without difficulty.
Case (¢) is not shown as the normal lower bound because
the human eve must intervene to integrate the image
alter one compression and reconsiruction scquence; i.c.,
the possibility of automatic cyeling through compression
and reconstruction has not becn shown.

62

Exemplifying the second major class, typing or 11—
point print has an upper bound (f) which comes close to
an estimate by the description mechanics technigue and
by a run-length coding system developed by Ford Instru-
ments. The lower bound (z) is based on a repeated
serics of scans for processing in computer memory,
equivalent to character recognition. (For a description
of similar programs, sce Greanias, et al. 17 Fer later
developments in character recognition, see Horowitz
and Shelton. 18y The intermediate cases, (y) and (s) are,
respectively, a Shannon-Fano coding of pica type, and
a simplified variable-length code.

For drawings, the third class, the upper bound (i)
was obtained from a simplified variable-length code de-
signed for typing, and the upper bound line is based on
the assumption that a code compression system for onc
type of document can be applied to other types. The
lower bound (k) is based on human coding of a circuit
diagram into a computer compiler language like BLODI.
The intermediate values are based on case (j), a
Huffman code designed for IBM drawings, and case (ac),
a straight binary count of run length.

A wide variety of other cases, represcnting the full
range from the digital coding of color photographs to
the coding of blank pages, c¢an be analyzed on the bhasis
of Fig. 2 and the identifying notes in Table 1.

We can now estimate potential code compression
ratios: the straight [acsimile entropy divided by the
entropy for the upper and lower bounds equals the lower
and upper hounds, respectively, for the compression
ratios., In Table 2, these hounds are estimated for the
sample cases examined above for each major class.
The same case designations (1) through (af) facilitate
comparison, and, in the first two celumns, points
pletted in Fig. 2 arc represented numerically. The
right-hand column shows the redundancy range relative
to 1.5 x 106 bits per document {8 1/2 by 11 inch page).
In the absence of such information for photographs, a
ratioc reported [or television pictures is listed as pos-
sibly indicative,

For typed or printed pages, 12,5 is an experimental
value from Bell Telephone Laboratories for a partcular
type lont; 47 is a theeretical limit based on 4. 75 bits
per character (character recognition) which would re-
quire many scans or proccssing steps, For line draw-
ings, the 25 for case (i) results if a simplificd
variable-length coding designed for typing is appliced to
a very simple drawing. The 115 is for casc (j), a
Huffman code designed for 1BM drawings, and the upper
hound, 710, is not machine-realizable, being for manual
coding into BLODI input language.

The examples of code compression included in Table
2 are based on particular scts of statisties. They fall
within the prejected ranges, in vicinities which may
prove fo he typical for cach class; and they suggest what



is certainly great variation in the redundancy range from
one class to another. The same compression code can-
not bo equally efficient for documents which differ so
greatly. The foregoing analysis underscores the need
for adaptive coding of some kind., The system designer
will aim for minimum buffer requirements, maximum
functional overlapping of hardware elements, and at
least two scans of the input data, when his goal is a sys-
tem which can accommodate these clagses of documents.

Another possibility suggested, a semi-adaptive
system, could work this way: at its point of origin,
every document page could be marked to designate the
code-compression applicable, (For a sample of adaptive
scanning, sce Van Blerkom. 19) The scanning system
would accept such pre-identified images, simply read-
ing the label without examining and classifying the con-
tents. This would not actually climinate steps, but
would move the burden of elassification to a different
and perhaps more logical place in the system. Auto-
matic information-handling systcms are bringing about
increasing standardization in document preparation, and
coding-at-source could be included along with indexing-
at-source and standard formatting.

Theoretical Basis for Image Compression

When a2 message is coded for transmission, i.e.,
converted into a signal suitable for a given channel, the
statistical properties of the message may or may not
be taken into account. If they are not, there is simply
a one-to-one cohversion of the message into a new
physical variable, as when a microphone converts sound
pressure inte proportional voitage or current. Such
non-statistical encoding processes require the same
transmission time for all messages of the same length;
they require no memory; they have a small and constant
delay; they are inefficicnt in their usc of channel capacity.
By contrast, statistical encoding takes into account the
probakilities of a message. Sequences which are likely
to occur often are represented hy short code designa-
tions; less likely sequences are assigned longer codes
(as in Morse code, where the shortest code groups
represent the most commeon letters}. Statistical en-
coding gencrally requires mcmory; it transmits mes-
sages of the same length at different rates, depending
on their content, and must therefore have variable
delavs (bulfers) at the sending and receiving ends in
order to accept and deliver messages at constant rates.
In statistical encoding, then (as OliverZ? concluded)
"the usual inefficiency which results [rom ignoring the
correlation betweon messages s lessencd because this
correlation is less in the reduced message." Reducing
the information rale (in Shannon's definition, "'the
average Uncertainty as to the next symbol when all the
past is known') thus reduces the number of bits per
second reoquired to describe the average message.

To see how this works, consider a scanned image
where s(t) is an ensemble of the scanner output wave -
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forms and S(f) is the spectrum of s(t) {sec Fig, 3). If
the image data is black and white only, the signal s(t}
will be a random square wave. If s{t} is bandwidth-and-
time-limated &s shown, it is completely described as a
veetor in 2FT dimensional signal space.

Now quantize signal samples into n discrete levels
so that the n-dimensional sample space contains sample
points 8. If ne kmowledge of the past or future is avail-
able, the average amount of information or entropy
(H, in bits} required to specify a particular present
sample 8{7) is, according to information theory,

oo -=- E P(si) log (Psj}

i
where P(s;) is the probability of the present sample

value s; and Uis the space of sample values. An upper
bound on the entropy is

H{®) <logn,

with equality if and only if all sample values are equally
likely.

If, on the other hand, we can take into account past
and future samples, we can reduce the amount of infor-
mation required to specify the present sample. This
reduced quantity

H (o/) = - E P(s;, rj) log P(Si/r]-)
ij

where O is the spacc of the present sample values (s4),
and Pis the space of all past and future sample values
{rj). When the samples arc correlated,

H (o/0) <H (0.

We thus define redundancy (o) as the average mutual
information:

I/  H@)-Hiop.

Stated in other words, the average number of bits
required to scn('?'l a signal sample is H @) if we have no
knowledge of past and future sample values; but only
H (o/p) bits per sample for transmission of storage. II,
however, the first-order density is peaked, the source
entropy is reduced, To gain this goal, we must find
transformations which make certain sample values more
likely than others, and then introduce a source trans-
formation such as Huffman ceding!3 to obtain an efficient
binary representation of the source.

In summary, efficient coding of a redundant infor-
mation source {or sequence of signal samples) requires
two steps. We first transform the sequence of



correlated samples into a sequence of uncorrelated
samples, using the past and future sample values to
“decorrelate' the present sample. This decorrelation
procedure should produce peaked fivst-order probability
densities. We can then convert the scquence of decorre-
lated samples to an elficient binary sequence (by Huffman
coding, for example}. The process of Huffman coding
produces the desired result -- a sequence of binary
digits which conveys a maximum amount of information
per sample.

Examples of Image Compression

Modified Huffman Coding of Run Lengths

Variable-length coding can resull in the compression
shown in Table 3, based on the run-length statistics re-
ported by Michel, ctal. Figurc 4 shows graphically
how this code would be applied. To aveid complex
coding of an extremely large alphabet, we have taken
only the ten most probable run lengths plus some special
symbols. All others are coded with a special prefix
plus a ten-digit binary number to designate the count,
The achievable compression can be computed from the
average run length (T).

T E L. P,
i7i

1
where Lj is the lenglh of the code word corresponding to
the ith symbol, and Py is the probability that the ith sym-
bol will oceur. As Fig. 5 shows, the average code word
for coding scheme (2) is less than half as long as the
average word in straight binary transmission (1), and
the average is cven less [or schemes (3), (4) and (5).

An Example of Reduction of Redundancy

Figure 6 compares scveral ways of scanning an
8 1/2 by 11 inch page of typing: [rom straight facsimile
reproduction through successive stages of code com-
pression to the level of character recognition.  (Elite
type, 6 characters per vertical inch and 12 per horizon-
tal inch, is assumed except where noted.} A straight
tacsimile scan for € - 125 lines /inch gives 1.5 x 106
bits /page {(Fig. 6a). When run lengths of solid black
or white are counted, the results arc as shown in Fig.
6h. Examining the probability distribution of the digits
required to represent the run-length count, we saw that
recoding could improve the efficiecncy. Consequently
the next step was to recode each string of zeros or cones
into a ten-bit binary count (Fig. 6c). As Tig. 6 goes on
to show, other codes -- Shannon-Fano, Huffman, or
simplified variable-length -- can reducec the average
number of bits per run (k) in such a case, even when
the necessary bits are added for synchronization.

For optimum two-dimensional recording of typed
documents, vertical (spatial) redundancy can be reduced.
If s lines are grouped together by fiber optic scanning
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heads, for example, the vertical line scan (h) is divided
by s as in Fig. 6e. Although this increases the average
run length count (k}, a suitable code can lead to a nct
increasc in compression, The compression suggested
in Fig. 6 is typical of the lower bound on information
per page for optimum recoding of typed documents.

If we have the logic required for character recog-
nition, we approach the ultimate limit for code com-—
pression., Tigure 6f assumes eniropy of six bits per
character, and Tigure 6g is based on the average
entropy of the English alphabet, 4,75 bits per letter,
for full character recognition. For word rccognition,
the redundancy of English would reduce the average
entropy to 2.62 bits per letter. 12

Selection of Proper RBase for Computing Compression
Ratio

To estimate or calculate compression ratios aceu-
rately, we must be sure we are relerring them to the
proper base. As noted, the redundancy ranges in
Table 1 are relative to 1.5 x 106 bits, and redundancy
or compression ratios computed in reference to other
standards would be expected to vary. The resolution
required aficcts the computation of the compression
ratic as shown in Fig. 7 (bascd on typed copy only). In
that figure, examples (A), (B) and (C) show the hits per
page for € - 0,0125, 0.020 and 0. 031 centimeters, i.e.,
for 200, 125 and 100 lines/inch respectively. A simpli-
fied variable-length codc produces approximate com-
pression ratios of 12.8, 10 and 11 for cases (II), (I} and
(J). A Shannon-Fano code would give grealer compres-
sicn.

The effeet of the resolution requirement can he
illustrated in this way: if € were 0.0125 centimelers
instead of the 0,031 assumed, the compression for (1),
which is a sample of pica type, would appear to be 37.8
rather than the 10 indicated. Te prevent this kind of
ambiguity, which ean invalidate comparisons, we must
generally determine the maximum resolution required
for actual duplication ol characters and take that as the
hase for all calculations., If the images need nol be
duplicated exactly, but must be clearly and unambigu-
ously recognizable, then the resolution requirement
will change. The solid, fully-formed character shown
on line (N} in Fig, 7 may not be required. If, for
example, the dotlgd character on line (P) is acceptable
instead, the resolution requirement changes accordingly.
It is the assumption that the completely formed charac-
ter is required which limits € to 0.031, and scts the
compression ratic at 10 in this case,

The lines in example (D} represent a half-page of
typing requiring 50, 000 bits, as the full-page case (1)
requirces 100,000 bits, Example (E) represents a
quarter-page of linc drawings, or approximately 8400
hits. Example (F) represents a blank quarter-page,
coded by 380 bits. (G) combines the results of (D), (E)



and (F). Assuming ¢ to be 0. 031, this results in 58, 780
bits for the page (50,000 + 8400 + 380) and a corapression
ratio of 17, If € were 0.020, on the other hand, the com-
pression ratio would be 25, as indicated. This shows
again how the true limit can be stated only in relation to
the exact resolution required. As (J} illustrates, the
compression ratio is the same for clite and pica type,
sinec ¢ naturally changes in a corresponding way. (K),
(L) and (M} show the limits for character recognition,
which requires more complex logic and operates within
the restriction of a fixed alphabet.

Conclugichs

As the above examples show, facsimile signals con-
tain a great amoeunt of redundancy, and standard faesim-
ile transmission and storage practices are highly
inefficient. Considerations suggested by information
theory can lead to techniques for efficient coding of the
information in a message, provided that the information
can be characterized as a statistical ensemble. Since
documents to be scanned, transmitted and reproduced
fall into a number of different ensembles due to varia-
tions in content, adaptive coding procedures must be
introduced if a coded-facsimile transmission and stor -
age system is to be highly efficient for a wide class of
documents,
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Table 1.

Documents Analyzed for Classification and Coding

reports

CLASSIFICATION
CASE DESCRIPTION AND CODING DETAILS

[a) Photographs Gray-scale resolution: 10 levels,
Scanning resolution: 125 lines per inch.

i} Typescript or print Black and white, Plca and 11-point
type with normal blank space ror
typed pages.

{0} Dine drawings Black and white. Fstimated from
stmple sketoh and circutt diagram.

[el} Photograph Information content relative to two-
level (black and white}: T (binits) -

I (Hartleys)/log 2 = 1/0. 3,

(i} Picture coding Estimated from lower value of range
{one to three bits) described in Ref. 10.

{1y Typescript wirthout Calculared by description mechanics,

margin (100 lines per Approximates Ford Instrument Analysis, 11
inch)

Te) Typescripl Compression: 13.5 for 7.43 percent
black. Cf. 12.8 in BTI. study 12 with
variable-length code approximating
Shannon-Fano code,

[h) Alphabetic code Requires techniques of character

{-1.75 bits{character) recopnition logic. L4

(1) Line drawing {BTIJ)IZ Coding: simplificd variable-length
code (designed for typescript).

£ Schematic drawiugir’ Huffman code, !®

fk) Circuit block diagram Coding: translated into BLODI compiler
language.

[r) I'elevision picture 2.85:1 compression ratio reported, I8

{in absence of other data)

() Color photopraph Description capacity for three colors
and black, 10 levels each color.

(o) Flack and white 20 levels, no restraints,

{q) Black and white 10 levels. Upper range of lower
bound from range of cases reported
in the literature.

. 11 L )

() Blavk and wlhit.e 10 Lewvels tor H 6.0 (F 22, 28).

. . R

[4) Black and white Two levels, for t 0.0 {F 22, 24).

() Halitone {100) estimated.

{1} d-point fype Marpgins and Llank lines oliminared

(v -nownt Lype Shannon-Fano coding extrapolated
from case (y).

{w) Character recognition Series of scans; then digital coding
{average of .75 bits/character),

%] Pica typescript Shannon-Fano coding.

{case g)
{2) Pica typescript Coding into 6 bits/character recognition.
(aa) BTL schematic Shannon- Fano codiag,
lease g}
{ab) BTL schematic Simplified variable-length coding.
{case g)
{ac) Drawing "H'" in IBM Straight binary run-length coding,

&6




Tahle 1.

(Continued)

{ad) Grid, BTL, case (g} Shannon-Fano coding.
{ae} Grid Binary coding of coardinate lines.
{af) Solid black Simplificd variable-length code {BTL)
designed for typing.
{ag) Solid black Indicated by 6=bit control signal.
{ak} Solid white (hlank) Indicated by é~bit control signal.
{ah) Bilank page coded as Shannon-Fano coding.
for typing statistics
{ai) Blank page coded as Simplified variable-length coding.
for typing statistics
{aj) Blank page Huffman code designed for drawing
in case (j).
{(ad) Black or white Digitized facsimile, with € - 0.02c¢m,
Table 2. Estimated Bounds for Codc Compression
DAOCUMENT BITS/PAGE COMPRESSION POSSIBLE
CLASSES
Upper Bound Lower Bound {For 1.5 x 106 Bits, € = 0.02 cm)
(a) Photographs || (d} 1.5 x 109 {e) 1.0 x 100 {(m)
(10 levels of decimal digits; binary Qigits
gray) 5 x 10% binary {estimated)
digits.
One Scan Two Many
(b} Typescript (f) 3.5 x 10> {h) 3,2 x 104 (f) 4.3 fg) 12.8 (h) 47.0
ar print {2
levels)
(c) Line Drawingf| {i} 6 x 10t 2.1x 107 {i) 25 (3} 115 tk} 710
(2 levels)
Table 3. Modificd Huffman Coding of Run Lengths
MODRIFIED
SYMBOL PROBABILITY HUFFMAN CODE
(black) 0. 200 10
(2) 0. 180 000
(3 0.180 00l
{1) 0100 110
(5) 0,070 0100
{all other
lengths) 0,066 0101 + x...%¥
(6} a.050 0111
{rmnargin) 0. 050 1110
(7 0.031 01100
(n 0.025 11110
(8) 0,022 e
(9) 0,015 GlI1010
(10} 0,011 011011
Z = 1.000
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Resolution Requirements and Compression Limits [or
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